
 
 

 
 
  
 
  

 

 

   UM10913 
PN7462AU Software user manual 
Rev. 1.3 — 20 March 2017                                                                                     
336613 

User manual                                                                            
COMPANY PUBLIC 

     

Document information 
Info Content 
Keywords PN7462AU/PN7360AU FW architecture, ROM FW, flash FW, HAL, 

examples 

Abstract This document describes the PN7462AU/PN7360AU FW architecture and 
how to use it. 



 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

2 of 97 

Contact information 
For more information, please visit: http://www.nxp.com 

Revision history 
Rev Date Description 
1.3 20172003 PSP example descriptions revisited 

1.2 20161101 Fig 20 and Fig 25 updated 

1.1 20160629 Section 9 PN7462AU critical sections in HAL added 

1.0 20160330 initial version 

 

http://www.nxp.com/


 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

3 of 97 

1. Introduction 
This document describes the PN7462AU FW architecture. The PN7462AU FW consists 
of ROM boot, ROM services, flash boot, and hardware abstraction layers. It also includes 
NXP NFC contactless protocol library, NXP contact library, product support package 
examples, and RTOS abstraction. 

This document is also valid for PN7360 derivative, in sections where the products differ 
characteristics of both products are described separately. 

 

2. PN7462AU FW architecture 

2.1 PN7462AU FW block diagram 
The PN7462AU FW block diagram is shown in Fig 1. 

NXP Contact Protocol 
Library 

NXP NFC Contactless 
Protocol Library

CRC RNG TIMER

PCRPMU CLKGEN

EEP FLASHGPIO

CLIF CT I2CM SPIM

I2C
SPI

HSU
USB

PSP EXAMPLES

CO
M

M
O

N
 U

TILITIES LAYERRT
O

S 
AB

ST
RA

CT
IO

N
 L

AY
ER

xx
x 

RT
O

S

FLASH 
BOOT

PROTOCOL ABSTRACTION LAYER

HW ABSTRACTION LAYER

N
o 

RT
O

S

ROM 
Services

API 

ROM 
BOOT

ROM SERVICES LAYER

In Application 
Programming

(IAP)
LifeCycle 

Management

ROM Boot/
Primary 

Download Config
CLIF ROM HAL USB PRIMARY 

DOWNLOAD 

Depends

Jumps

 

Fig 1. PN7462AU FW block diagram 

 

The FW can be divided into NXP FW and user FW. The NXP FW is placed in ROM 
memory region and protected flash memory region. The user FW is placed in the user 
flash memory region. The protected flash memory region is primarily used to place ROM 
patches. 

The NXP FW consists of ROM boot, ROM services and USB primary download. The 
user FW consists of flash boot, hardware abstraction layers, NXP NFC contactless 
protocol library, NXP contact library, product support package examples, and RTOS 
abstraction. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

4 of 97 

NXP Internal

Customer 
Application

(HALs, PALs,RTOS AL, 
PSP Examples)

PHYSICAL FLASH START = 0x0020 3000

0X0022 A7FF

PHYSICAL FLASH_END= 0x0022 AFFF

Customer 
FW

Customer 
Secondary Dnld

Flash Boot

0x0020 4000

NXP FW

2K
4K*

Flashed during 
Production

Flashed with NXP 
Primary Download 

*4K is just an example size of 
secondary download

154K

Flashed with Customer 
Secondary Download 

ROM1 Primary 
Download

ROM1 Boot

ROM2 Protected 
Services/API

PHYSICAL ROM1 START = 0x0000 0000

PHYSICAL ROM END = 0x0000 9FFF

NXP FW

ROM3 Open API

PHYSICAL ROM2 START = 0x0000 5000

PHYSICAL ROM3 START = 0x0000 7800

 

Fig 2. PN7462AU FW memory regions 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

5 of 97 

 

NXP Internal

Customer 
Application

(HALs, PALs,RTOS AL, 
PSP Examples)

PHYSICAL FLASH START = 0x0020 3000

0X00216FFF

PHYSICAL FLASH_END= 0x0022 AFFF

Customer 
FW

Customer 
Secondary Dnld

Flash Boot

0x0020 4000

NXP FW

80K
4K*

Flashed during 
Production

Flashed with NXP 
Primary Download 

*4K is just an example size of 
secondary download

76K Flashed with Customer 
Secondary Download 

ROM1 Primary 
Download

ROM1 Boot

ROM2 Protected 
Services/API

PHYSICAL ROM1 START = 0x0000 0000

PHYSICAL ROM END = 0x0000 9FFF

NXP FW

ROM3 Open API

PHYSICAL ROM2 START = 0x0000 5000

PHYSICAL ROM3 START = 0x0000 7800

 

Fig 3. PN7360AU FW memory regions 

Memory map of the PN7360AU derivative. 

In the above diagrams, customer secondary download is shown only as a reference. 
Secondary download is not explained in this user manual. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

6 of 97 

384
Bytes

3.5
KBytes

0x202000

0x201180

0x201000
128

Bytes

0x201200

NXP protected section

NXP Production Section

USB Configuration Data

Accessible while executing from 
Flash in User Mode

User Region
Accessible via USB Mass Storage

 

Fig 4. PN7360AU EEPROM memory regions 

 

Note: The RFU section of 128 bytes is kept hidden from the aperture of USB mass 
storage. But this area is used by the HAL executing from the user flash for internal 
purposes. As of now, there is no special use case for this region and hence in the default 
examples of PN7462AU, this region remains unused. 

 

2.2 PN7462AU FW layer dependencies view  
Upon POR or wake-up from IC HPD state or IC standby state, the ROM boot is 
executed.  

For primary download mode, USB primary download code follows the ROM boot. 

For user application mode, flash boot follows the ROM boot. The flash boot routine is 
user accessible whereas the ROM boot routine is not user accessible. The flash boot 
uses HALs for device initialization and executes one of the PSP examples provided in 
the SW package. 

The PSP examples use NXP contact protocol library, NXP NFC contactless protocol 
library, and HALs to demonstrate user application development. The PSP examples and 
the HALs use ROM services to execute protected functionality.  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

7 of 97 

The PSP examples, PALs and the HALs use RTOS abstraction layer to execute. They 
can execute either with RTOS (such as FreeRTOS) or without RTOS, using single 
execution context in the thread mode of ARM.  

Also, PSP examples, PALs and the HALs use common utilities layer for functions such 
as memcpy, delay loop, etc. For simplicity, the dependency link is not shown in the 
diagram. 

2.3 PN7462AU FW modes 
The PN7462AU can either be in USB primary download mode or user application mode, 
depending on the state of DWL_REQ pin and USB_VBUS pin at ROM boot execution. 

Table 1. PN7462AU FW modes 
DWL_REQ  USB_VBUS FW mode 
0 X user application mode 

1 0 undefined 

1 1 USB primary download mode 
 

3. PN7462AU ROM FW 

3.1 PN7462AU ROM boot 
The ROM boot is executed upon power-on reset, wake-up from IC hard power-down 
state and wake-up from IC standby state. The ROM boot performs the following 
functions: 
1. Applies the trim values required for proper functioning of the IC. 
2. Enable the HW blocks that are specified for the product part. 
3. Start the PVDD LDO in case of internal PVDD configuration. 
4. Sample the DWL_REQ pin and USB_VBUS pin in case pad voltage is available to 

determine FW mode. 
5. Perform switch to the modes defined in Table 1. 

The ROM boot also switches to user application mode in case no pad voltage is 
available. For switching to user application mode, the ROM boot performs a vector 
remapping and a CPU core reset. 

The ROM boot communicates the boot result code to flash application through 
PCR_GPREG0_REG register. This result code is apart from HW boot reason which is 
present in PCR_BOOT_REG.BOOT_REASON and PCR_BOOT2_REG. 

 

3.1.1 PN7462AU ROM boot EEPROM config 
The PN7462AU ROM boot depends on the EEPROM parameters. These parameters are 
present in the NXP protected section of EEPROM memory, ranging from 0x201000 to 
0x20117F. The EEPROM parameters are used by the user according to the system 
design using ROM Services. The parameters are as follows: 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

8 of 97 

Table 2. ROM boot EEPROM parameters 
Parameter Possible value Description Default value Max value 
PVDD source internal (0x55) if voltage at VBUS pin is > 4 V, ROM boot 

assumes that PVDD_OUT pin is connected to 
PVDD_IN pin of the PN7462AU and starts the 
internal PVDD LDO  

33 (Auto) 

 

 

- 

 

- 

- 

 

 

-  

 

- 

external (0xAA) ROM Boot assumes that PVDD_OUT pin is 
connected to GND and PVDD_IN is connected 
to external PVDD LDO 

auto (others) it can be either internal or external HW 
configuration and the ROM boot detects the 
configuration 

PVDD in time-
out 

Time-out in units of 
100 µs 

duration for which the ROM boot waits for 
external PVDD to arrive or internal PVDD output 
to stabilize on PVDD_IN pin 

100 ms 200 ms 

VBUS in time-
out 

Time-out in units of 
100 µs 

duration for which the ROM boot waits for 
VBUS voltage to become greater than 4 V in 
order to start internal PVDD LDO 

100 ms 200 ms 

 

3.1.2 PN7462AU ROM boot result code 
The boot result codes are communicated to flash application through the first 16 bits of 
PCR_GPREG0_REG register. They primarily indicate if PVDD is available and the 
potential cause, if not available. The boot result codes are as follows: 

Table 3. Boot result code 
Boot result code  Description 
0x0000, 0x0001, 0x0003 PVDD is available through internal PVDD LDO  

0x0002, 0x0004 PVDD is available through external LDO 

0x1000,0x1002,0x1003,0x1007,0x1008 PVDD is not available at PVDD IN even though internal LDO is turned on 

0x1001,0x1009 VBUS is not greater than 4 V 

0x1004,0x1006 PVDD is not available through external LDO 

0x1005 IC woke up from standby because PVDD disappeared either from internal 
LDO or external LDO 

 

3.2 PN7462AU ROM primary download 
USB primary download is a feature available to the user to download code and data to 
user flash memory and user EEPROM memory using mass storage application 
respectively. 

Based on the variant size, the user flash memory available in the IC from 0x203000 
onwards. For example, for 80 k variants, user flash start: 0x00203000, user flash end: 
0x00216FFF. For 154 k variants, user flash start: 0x00203000, user flash end: 
0x002297FF. For 158 k variants, user flash start: 0x00203000, user flash end: 
0x0022A7FF 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

9 of 97 

The user EEPROM memory available in the IC is 3.5 K and is situated in the physical 
address range from 0x201200 to 0x201FFF.  

The quick start guide provides information regarding the usage of USB primary download 
feature. 

 

3.2.1 PN7462AU ROM primary download EEPROM config 
The PN7462AU ROM primary download depends on the EEPROM parameters. These 
parameters are present in the NXP protected section of EEPROM memory ranging from 
0x201000 to 0x20117F. The EEPROM parameters are used by the user according to 
their system design using the ROM services. The parameters are as follows: 

Table 4. ROM primary download EEPROM parameter 
Parameter Possible value Description Default value Max value 
code read protection level 0 read, erase and write are allowed 0 - 

1 read and erase are not allowed; write is 
allowed 

2 read is not allowed; erase and write are 
allowed 

3 read, erase and write are not Allowed 

data read protection level 0 read, erase and write allowed 0 - 

1 read and erase not allowed; write is 
allowed 

2 read is not allowed; erase and write are 
allowed 

3 read, erase and write are not allowed 

primary download any value other 
than 0x96 

USB primary download feature is 
enabled 

0 - 

0x96 USB primary download feature is 
disabled 

 

The ROM primary download uses USB interface for enumeration. The configuration 
required for USB interface can be categorized into two parts: 
1. USB enumeration-specific configuration. 
2. USB HW initialization-specific configuration. 

The USB enumeration-specific configuration is fairly straightforward. Users may refer to 
USB specification and ROM services API for more details. 

The USB HW initialization-specific configurations are described in Table 5. 

Table 5. Configuration for USB interface 
Parameter Possible value Description Default value Max value 
USB discharge 0 disable fast discharge of USB 0 - 

1 enable fast discharge of USB 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

10 of 97 

Parameter Possible value Description Default value Max value 
XTAL HW activation 
time-out 

time-out in units of 1 ms duration the primary download waits for 
XTAL oscillator to be up after HW 
activation 

2 ms 255 ms 

XTAL SW activation 
time-out 

time-out in units of 1 ms duration the primary download waits for 
XTAL oscillator to be up after SW 
activation 

2 ms 255 ms 

USB PLL detection 
window length 

0-255 window length to detect 27.12 MHz PLL 
input clock 

13 255 

USB PLL CLK edges  0-255 number of clock edges to detect 27.12 
MHz PLL input clock 

141 255 

 

3.3 PN7462AU ROM services 
The ROM services are accessible via flash APIs present in 
root_dir/PN7462AU/phCommon/inc/phhalSysSer.h and with detailed description in API 
documentation (.chm file). The PN7462AU provides ROM services for performing the 
functions described in sections below. 

 

3.3.1 PN7462AU IC lifecycle management services 
There are four lifecycle parameters that are used by users at various stages of product 
development. 

 

3.3.1.1 ROM primary download disable 

phhalSysSer_USB_PrimaryDnldConfig() is used to irreversibly disable the ROM primary 
download feature. On subsequent boots, the ROM boot never enters ROM primary 
download mode, even if DWL_REQ pin and USB_VBUS pin is high. 

This feature is typically used after development and flashing of secondary downloader in 
the flash memory, for subsequent code/data upgrades. 

 

3.3.1.2 SWD access permissions 

When the PN7462AU IC is delivered from production to user, the default SWD access 
level enables the user to view and debug user flash memory, user EEPROM memory, 
user RAM memory, and peripheral registers. The access level can be irreversibly 
changed to prevent view/debug access to any memory region or peripheral registers, 
before deploying the IC to the field. phhalSysSer_OTP_SecrowConfig() can be used to 
lock the SWD against any further access. 

Once SECROW functionality is locked, this feature cannot be used anymore. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

11 of 97 

3.3.1.3 Code write protection 

It is required to lock flash memory from write at HW level. It is locked possibly at a stage 
when secure secondary upgrade is not planned for the remaining lifecycle of the product. 
For such use cases, phhalSysSer_OTP_SecrowConfig() is used to lock flash memory 
from any further write. Any flash programming after locking the flash results in hard fault. 

Once SECROW functionality is locked, this feature cannot be used anymore. 

 

3.3.1.4 RST_N pin behavior 

The SecRow contains the bits that control the behavior of HW related to the RST_N pin 
when pad voltage is not available. Two parameters define the RST_N pin behavior, 
RST_N pull-down and RST_N value. 

The phhalSysSer_OTP_SecrowConfig() is used to control the RST_N pin behavior. 

 

Table 6. RST_N pin parameters 
RST_N pull down RST_N value HW operation 
0 X[1] pad voltage availability is always assumed in this system; 

IC checks the status of RST_N pin at POR and enters 
either HPD or starts ROM booting 

1 1 pad voltage availability is not assumed in this system; IC 
does not check the status of RST_N Signal and starts 
ROM boot normally upon POR 

[1] X means “any value”. 
 

Once SECROW functionality is locked, this feature cannot be used anymore. 

 
 

3.3.1.5 SecRow lock 

The HW SecRow contains the SWD access bits, code write-protection bits and RST_N 
pin behavior bits. For blocking any further writes to SECROW register, the 
phhalSysSer_OTP_SetSecrowLock() is used. It prevents further usage of 
phhalSysSer_OTP_SecrowConfig(). 

Note: phhalSysSer_OTP_SecrowConfig() ROM service API should be used considering 
EEPROM erase/write limitations. If power fails during an EEPROM write, then the state 
of the location being written is undefined. EEPROM corruption of SECROW register can 
compromise boot process, since following the POR the bootup sequence is automatically 
launched to fetch the 32-bit SECROW located in EEPROM protected area. It is 
recommended to program SECROW register at the production time only once. 

 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

12 of 97 

3.3.2 PN7462AU ROM boot configuration 
phhalSysSer_USB_PVDD_Config() is used to configure the ROM boot EEPROM 
configuration; see Section 3.1.1. 

 

3.3.3 PN7462AU ROM primary download configuration 
 phhalSysSer_USB_PrimaryDnldConfig() and phhalSysSer_USB_Config() is used to 
configure the ROM primary download EEPROM configuration; see Section 3.2.1. 

 

3.3.4 PN7462AU in-application programming 
phhalSysSer_SetFlashProgram() is used during secondary FW upgrade developed by 
the user. Since the secondary downloader of the user executes in flash memory, it 
cannot write (programmed) at the same time. Hence the programming of flash page is 
performed from ROM memory and hence this API. 

This API returns an error if code write protection is enabled in SECROW register. 

 

3.3.5 PN7462AU CLIF ROM HAL 
The CLIF ROM services contain a number of HAL functions. These functions are 
internally used by the CLIF flash HAL and are not supposed to be directly used by the 
user application code. Hence, these services are not described in this user manual. 

 

3.3.6 Utilities 
The ROM Services provide 2 utilities to customer. 

3.3.6.1 CPU reset from flash boot 

PN7462AU IC reset always results in ROM booting. However, if the booting has to be 
done directly from the flash (for example, perform ARM core reset only), the API 
phhalSysSer_SetCPU_Reset() is used. The digital peripherals are not reset and may 
contain residual state. 

3.3.6.2 Get die ID 

It is a unique IC-specific ID stored in the NXP protected section of EEPROM. User can 
use phhalSysSer_GetDieID() to read this value and further use for their security 
algorithms (for example, key diversification). 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

13 of 97 

 

4. PN7462AU user FW  

4.1 PN7462AU flash boot 
The flash boot is executed when ROM boot performs a vector remapping and the CPU is 
reset. The relevant functions are present in /root_dir/PN7462AU/phBoot/src. 
 
The functions performed by flash boot (before jumping to one of the PSP examples) and 
the sequence of flow is shown in Fig 5. The total time taken for flash boot in NXP 
provided reference package is ~900 µs. 

At the end of flash boot, execution always calls AppMain(). 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

14 of 97 

ROM Boot

Load Initialized Data 
from Flash to RAM*

Perform Zero 
Initialization*

Set Default Interrupt 
Priorities

Boot Reason = 
VBUS Low

Yes Put IC to HPD State

No

PVDD Available

Initialize HW
Timers, TxLDO Set to Full Power, PCR::CL & CT 

Temperature Sensors, CLIF Analog to be set during 
Standby, Clock source activation + timeout and SW Start 
Flag,  Random number Generator, GPIOs, EEPROM HAL *, 

FLASH HAL *

AppMain()

No

Write ROM Boot 
Result Code to EEP 
Location 0x201224 

Enable Only PCR IRQ in NVIC and 
PVDD IRQ in PCR and PVDD IRQ 

Level as 1.8V

WFI

Yes

Check if 27.12 Mhz is 
available No DeInitialize HW

Stop Boot
Yes

Initialize CT HAL

Initialize RF HAL

Platform Specific

Legend

Configure MSP/PSP

__cmain / 
__main

main()

Valid User 
EEPROM

Valid ROM 
Patches

No No

Yes

Yes

Stop Boot

Initialize RTOS * (If compiled with RTOS)

Portable / Common

Wait for TxLDO To 
Start

ResetISR /
__iar_program_start

 

Fig 5. PN7462AU flash boot flow 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

15 of 97 

4.1.1 ARM CPU and RAM regions initialization  
The ARM is configured to execute from thread mode. The Main Stack Pointer (MSP) is 
initialized to the top of user SRAM. The user SRAM region is between 0x102000 to 
0x102BFF. The process stack pointer is initialized after end of MSP. The process stack 
and the heap grow towards each other. The user has to ensure that the process stack 
and heap do not corrupt each other. The PSP/MSP initialization is done in 
“phFlashBoot_GCC.c” in LPCXpresso project and in “phFlashBoot_IAR.s” in iAR project. 
In the Keil project, the “startup_PN74xxxx.s” (part of Keil MDK PN7xxxx installer pack) 
initializes the PSP/MSP. The user SRAM is limited to 12000 bytes and 256 bytes is used 
by NXP FW executed in ROM. 

 

USER RAM START = 0x0010 0020

MainStack

NXP RAMPHYSICAL RAM START = 0x0010 0000

USER SRAM END = 0x0010 2F00

NXP RAMPHYSICAL SRAM END = 0x0010 2FFF 256 bytes

32bytes

ProcessStack

HEAP
BSS,IDATA

400 bytes

 

Fig 6. PN7462AU FW memory regions 

 

4.1.2 BSS and IDATA initialization 
Due to real-time target mode requirements (response within 5 ms of ROM boot), the flash 
boot time shall be as low as possible. Hence, the FW shall not contain any IDATA and 
shall also work with BSS not initialized to zero.  

At 20 MHz, it takes approximately 171 us to zero initialize 976 bytes of data. This value 
represents combined ZI data for the Application + Protocol Library + RTOS + HALs. Its 
size varies based on the application and the configuration of the application (Used HALs, 
RTOS, Protocols, etc.) itself. 

Ideally, the FW may potentially work even with BSS non-initialized to zero. But with 
integration of many commercially available RTOS or protocol libraries such as 
NxpNfcReaderLibrary, there is bound to be few bytes of initialized data and a 
requirement to initialize BSS with zero. Hence to keep the zero initialization to a 
minimum, PH_NOINIT is used to exclude variables from zero-init. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

16 of 97 

4.1.3 Default interrupt priorities 
The interrupt priorities are application-dependent. Hence, there are few restrictions on 
the user with regards to interrupt priority setting. SVC is used for application purposes. 
However, ROM services shall not be called from SVC handler since ROM uses SVC 
handler for patch mechanism. Similarly, SVC handler must be set to highest priority 
before calling system services. The typical interrupt priority settings are shown below and 
are set in phFlashBoot_SetIntrptsPrio(). 

Table 7. Default interrupt priorities 
Exception/IRQ Priority  Description 
RESET -3 (highest) reset ISR 

NMI -2 upon watchdog timer expiry 

HardFault -1 upon invalid memory accesses 

SVC PH_HAL_INTRPT_PRIO_REALTIME used by system services function; 
is used by user application, but 
system services shall not be called 
from an SVC handler 

CLIF, HIF, CTIF, 
PMU, PCR 

PH_HAL_INTRPT_PRIO_HIGH interfaces ISR and system event 
ISRs 

Timer, EECNTRL, 
SPIM, I2CM 

PH_HAL_INTRPT_PRIO_HIGH utility ISRs and master interfaces 

PendSV, SysTick  PH_HAL_INTRPT_PRIO_LOW context switching ISRs 

 

4.1.4 Boot reason and result code handling 
The flash boot checks PCR registers for exceptions in the boot reason and boot result 
code provided by the HW and ROM boot respectively; see Section 3.1.2.  

If the HW boot reason is VBUS_LOW, it means that the IC wakes up from standby 
because the VBUS dropped below threshold. In such cases, the flash boot configures the 
IC to enter hard power down state. If there is any other boot reason, the flash boot 
checks for pad voltage availability. If the pad voltage is not available, it writes the boot 
result code to EEPROM location 0x201224 and waits for PVDD to arrive, by executing 
WFI (ARM SLEEP instruction). 

The exception checks are performed using phFlashBoot_PreCheck(). 

 

4.2 PN7462AU HALs initialization at boot UP 
The following initialization happens during default boot up of PN7462AU.  

 

4.2.1 Temperature sensor initialization and RF standby configuration 
The PN7462AU consists of two temperature sensors, one for contactless front end and 
another for contact front end. In this initialization, the temperature sensors are enabled 
and the lower and upper thresholds are configured. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

17 of 97 

The CLIF transmitter analog configuration required during standby/suspend are also 
initialized.  

During USB suspend, a set of registers are configured to reduce the power configuration. 
This set of registers are provided during initialization. 

It is recommended not to change the value different from the default value in EEPROM. 

Table 8. EEPROM parameters for temperature sensors - PcrPwrTempConfig 
Power clock reset temperature configuration related to phhalPcr_PwrTempConfig_t                 
Type  Field name  Default value Description  

u8 bUseTempSensor0 0  
flag to indicate to use temperature sensor 0 or not 
0: Disabled 
1: Enabled 

u8 bUseTempSensor1 0  
flag to indicate to use temperature sensor 1 or not 
0: Disabled 
1: Enabled 

u8 bLowTempTarget0 3  

0 : 135 
1 : 130 
2 : 125 
3 : 120 

u8 bLowTempTarget1 3  

0 : 135 
1 : 130 
2 : 125 
3 : 120 

u8 bHighTempTarget0 0  

0 : 135 
1 : 130 
2 : 125 
3 : 120 

u8 bHighTempTarget1 0  
0 : 135 
1 : 130 
2 : 125 

 
For a detailed parameter description, and parameter addresses in the EEPROM refer to 
the EEPROM description [2] file. 

Table 9. EEPROM parameters for power down settings - PcrPwrDown 
It is a 32-bit value bit-file created by ORing enums of type phhalPcr_PwrDown_Setting_t used to select which settings must 
be applied to reduce power consumption during suspend. 
Type  Field name  Default value  Description  

u32 dwPwrDownSettings 0x7FFFFFFF 0x7FFFFFFF: E_APPLY_ALL_SETTNGS. i.e. all 
power reduction settings are applied during suspend                

 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

18 of 97 

Table 10. EEPROM parameters for temperature sensors - TxAnaStandByConfing  
TxAna register settings for standby; See phhalPcr_TxAnaStandByConfig_t 
Type  Field name  Default value  Description  

u32 dwAna Tx StandBy 
Value 0x0F  to hold CLIF standby GSN value selection                      

u32 dwAna Tx Pro tStandBy 
Value 0x03  to hold the CLIF configuration related to power-down  

 
For a detailed parameter description and parameter addresses in the EEPROM refer to 
the EEPROM description [2] file. 
 

4.2.2 CLKGEN initialization 
The CLKGEN HW can have two sources: XTAL or external clock. Depending on the 
crystal characteristics, the activation time-out can be different. If HW activation fails, the 
HAL and HW provides a mechanism to perform SW activation. All these options are 
initialized during the flash boot. 

The user shall modify the EEPROM according to the board/system design. 

Table 11. EEPROM parameters for CLKGEN - Clkgen 
Clock generator.  See phhalClkGen_Init_ 
Type  Field name  Default value  Description  
u16 wXtalActivationTimeOut 2000  dwXtalActivationTimeOut activation time-out value 

u8 eSource 0x00  eSource clock source selection, See phhalClkGen_Source_t 

u8 bKickOnError 0x00  bKickOnError kick on error. 

 
For a detailed parameter description and parameter addresses in the EEPROM, refer to 
the EEPROM description [2] file. 

 

4.2.3 CLIF transmitter TxLDO initialization 
The TxLDO used for CLIF transmitter is initialized as part of the boot. The parameters 
such as whether internal TxLDO is used or external TxLDO is used, the power 
configuration for full power (used in reader mode and SL-ALM card mode if internal 
TxLDO is used), low power configuration (for PLM card mode), TxLDO start-up time and 
over current enable are configured.  

The user shall modify the EEPROM according to the board/system design. 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

19 of 97 

Table 12. EEPROM parameters for PMU – CLIF transmitter TxLDO 
Power management unit. (See phhalPmu_TxLdoInit and phhalPmu_TxLdoParams_t) 
Type  Field name  Default value  Description  

u8 bUseTxLdo 0x01  

parameter to use internal TxLDO or to use external TxLDO                     
0: do not use internal TxLDO 
1: use internal TxLDO 
 

u8 eFullPowerTvddSel 0x04 

TVDD Sel for reader mode. See phhalPmu_TvddSel_t                      

 0 : 3 V 
 1 : 3.3 V 
 2 : 3.6 V 
 3 : 4.5 V 
 4 : 4.7 V 

other: invalid 

u8 eLowPowerTvddSrc 0x01 

Source for the TVDD See phhalPmu_LowPower_TvddSrc_t 

 0: source is TVDD In 
 1: source is VUP 
 2: source is VBUS 

other: invalid 

u8 bOverCurrentEnable 0x00 

Over current interrupt 

 0: Disabled 

others: Enable 

u16 wWaitTime 250 waiting time after the TxLDO is started 250us is typical value. 
Maximum 500us 

For a detailed parameter description and parameter addresses in the EEPROM, refer to 
the EEPROM description [2] file. 

 

4.2.4 RNG HW Initialization 
The time-out for true random number generation is initialized. It is recommended not to 
change the value different from the default value in EEPROM. 

Table 13. EEPROM parameters for RNG HW - RNG 
Random Number Generator. See phhalRng_Init 
Type  Field name  Default value  Description  
u16 wXtalActivationTimeOut 2000 dwXtalActivationTimeOut activation time-out value 

For a detailed parameter description and parameter addresses in the EEPROM, refer to 
the EEPROM description [2] file. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

20 of 97 

4.2.5 GPIO initialization 
The GPIOs are initialized for I/O and pullup/pulldown in case of input and slew rate in 
case of output. 

The customer shall modify the EEPROM from where the GPIO initialization configuration 
is taken in accordance to the board/system design. 

Table 14. EEPROM parameters for GPIO 
GPIO Bootup configuration. Each byte represents a GPIO configuration starting from GPIO 1 to 12. See phCfg_EE_Boot_GPIO_t. 
Type  Field name  Default value  Description  

u8[12] OutputPUPD 

00 00 00 00 
00 00 03 03 
07 03 03 03 
(hex) 

lower nibble - related to output configuration                         
upper nibble - related to pull-up/pull-down configuration                      

 Bit0 = 0: skip configuration as output on boot 
 Bit0 = 1: configure GPIO as output 
 Bit1 = 1: enable slew-rate 
 Bit2 = 1: drive the output high 
 Bit2 = 0: drive the output low 
 Bit5 = 1: apply pull-up 

Bit6 = 1: apply pull-down 

u8[12] InputISR 

00 00 00 00 
00 00 00 00 
00 00 00 00 
(hex) 

 ALL = 0: skip configuration on boot 
 Bit0 = 0: unconfigure as input 
 Bit0 = 1: configure/SET as input 
 Bit1 = 1: GPIO is a wake-up source 
 Bit2 = 1: GPIO is an interrupt source 
 Bit4 = 1: level sensitive interrupt 
 Bit5 = 1: interrupt on active low or falling edge 

For a detailed parameter description and parameter addresses in the EEPROM refer to 
the EEPROM description [2] file. 

 

4.2.6 General-purpose timers initialization 
The PN7462AU consists of four general-purpose timers. The HAL context to manage the 
timer requests are initialized during the flash boot. 

 

4.2.7 Clock 27.12 MHz check 
In PN7462AU, the FW always assumes the availability of 27.12 MHz clock sourced from 
either external crystal or external clock. This clock is required for all communication 
interfaces and flash programming. If a crystal is used, PN7462AU HW has a crystal 
oscillator that is activated by default and it takes maximum of 2 ms to activate and 
generate stable 27.12 MHz. 

For this purpose, the flash boot performs most HW initialization to utilize the XTAL 
activation time. Hence the flash boot checks if the 27.12 MHz is available and if not 
available de-configures all HALs and stops booting. If available, flash boot proceeds to 
initialization of HALs that require 27.12 MHz clock. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

21 of 97 

 

4.2.8 EEPROM/flash HAL initialization 
These HALs are not used in a typical contactless or contact application. They are used 
during secondary downloader application. By default, these HALs are disabled. The 
compile-time directives, NXPBUILD__PHHAL_EEPROM and 
NXPBUILD__PHHAL_FLASH enable the HALs. 

After the common HALs initialization, the flash boot jumps to user application program. 

Note: The secondary bootloader is placed directly after the flash boot code and provides 
the functionality to download a user application program; see Fig 2. The HAL API 
provides functions that enable to read and write user data on the flash or EEPROM. 
All the functions are described in PN7462AU FW API Guide document under “Hardware 
Abstraction Layer - Generic HALs - FLASH HAL / EEPROM HAL” and in the files 
“root_dir/PN7462AU/phCommon/inc/ phhalFlash.h” and 
“root_dir/PN7462AU/phCommon/inc/phhalEeprom.h”. Use 
NXPBUILD__PHHAL_EEPROM and NXPBUILD__PHHAL_FLASH compile-time 
directives to enable them. By default, both directives are disabled and are available in 
“ph_NxpBuild_Default.h”. 

During data reading and writing, best time is achieved with flash HIGH perf ON and ramp 
clock ON. 

 

4.2.9 RF HAL initialization 
The CLIF IP registers are set to pre-defined values from EEPROM and few registers are 
reset to default values. Event mechanisms are initialized to act as IPC between ISR and 
HAL. This initialization prepares the RF HAL to transition to either target mode if external 
RF field is present or reader mode if application wishes. 

By default, the operating mode of CLIF HAL is set to NFC Forum mode. It means that the 
guard times for various technologies are applied according to NFC Forum. All spurious 
interrupts are cleared and interrupt enabled at ARM level (NVIC interrupt). 

Also, the DPC feature for reader mode and APC feature for SL-ALM card mode are 
initialized. 

The EEPROM required for CLIF is split into 2 memory regions: One common region and 
one protocol-specific region. 

 

4.2.10 CT HAL initialization 
The CLIF IP registers are set to pre-defined values from EEPROM and few registers are 
reset to default values. Event mechanisms are initialized to act as IPC between ISR and 
HAL. Primarily the connector type (open/closed), pull-up/pull-down configuration, 
automatic CT deactivation and slew rate of the contact pads are configured. 

If the pull-up/pull-down configuration is mismatched between the EEPROM and the 
actual setting on board, spurious interrupt may occur.  

The customer shall modify the EEPROM in accordance to board/system design. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

22 of 97 

Table 15. EEPROM parameters for CT  
Initial settings for CT interface. See also phhalCt_InitParam_t  
Type  Field name  Default value  Description  

u8 bPullUp 1  

pull up configuration 

 0: pull-down 
 1: pull-up 

others: undefined behavior 

 u8  bConnectorType  1  

 connector type 
 0: normally closed 
 others: normally open 

 u8  bAuto CT Deactivation 
Enable  1  

 auto deactivation 
 0: Disabled 
 others: Enabled 

 u8  bSlewRate 
 0x38  

CLK,IO,VCC slew rate 

 0: CLK,IO,VCC slew rate 

 others: This value is directly mapped to ct_srr_reg to give enough 
options 

 

For a detailed parameter description and parameter addresses in the EEPROM, refer to 
the EEPROM description [2] file. 
 

4.2.11 HAL deinitialization 
If any of the initializations fail, all the HALs are de-initialized in the 
phFlashBoot_HwTearDown() API. 

 

4.3 PN7462AU generic HALs 
For details of HAL functions and their description, refer to the API guide (CHM 
document). In the sections discussed below, functional usage of the HALs are described. 
The usage activity diagrams show a representation of usage and parameters. 

To provide more memory for customer application, some of the below HAL functions are 
completely or partially moved to ROM3 region. The “PN7462AU_ROM3.h” contains the 
ROM3 functions that are used internally by the flash HAL implementation or flash HAL 
API. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

23 of 97 

4.3.1 Timer HAL 
The PN7462AU IC provides four general-purpose timers, watchdog timer and system tick 
timer.  

The SysTick timer is used for RTOS scheduler and is initialized in the RTOS-specific 
configuration file.  

The general-purpose timer 0 and timer 1 are 12-bit timers at 3 kHz frequency. Timer 2 
and Timer 3 are 32-bit timers at 20 MHz frequency. The Timer 0 and Timer 1 can be 
concatenated as a single timer with Timer 1 incrementing a step upon Timer 0 
completion.  

The Timer HAL provides APIs to manage the lifecycle of an HW timer; see Fig 7. 

Upon request of a timer for a time unit (microsecond/millisecond/second), the timer HAL 
allocates the HW timer according to Table 16. 

Upon successful timer request, the allocated timer may be configured for different 
timeouts and callbacks after one or multiple start-stop cycles.  

The timer IRQ executes the callback in the ISR context. 

The flash HAL implementation provides a wrapper for context management and the core 
register functions are present in ROM3. 

 

phhalTimer_RequestTimer(us/ms/s)

phhalTimer_Configure(timeout,
callback)

phhalTimer_Start()

phhalTimer_Stop()

phhalTimer_Release()

ApplicationFlash Boot

phhalTimer_Init

Timer ISR

Callback of the 
expired timerphhalTimer_DeInit

 

Fig 7. PN7462AU timer HAL usage 

 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

24 of 97 

Table 16. HAL timer allocation 
Timer Width Frequen

cy 
Min to Max to Recommended use 

Timer 0 12-bit 3 kHz 330 µs 1351 ms millisecond timer 

Timer 1 12-bit 3 kHz 330 µs 1351 ms millisecond timer 

Timer 0 & Timer 1  3 kHz  4095 × 1351 ms = 5532 s first priority: seconds timer 
second priority: millisecond 
timer 

Timer 2 32-bit 20 MHz 50 ns 215 s first priority: microsecond 
timer 
second priority: seconds timer 

Timer 3 32-bit 20 MHz 50 ns 215 s 

Watchdog 10-bit 45 Hz 21.5 ms 22 s recovery from HW or SW 
hangs or loops 

 

The watchdog timer is a 10-bit timer at an approximate frequency of 45 Hz. Upon 
watchdog timer expiry, the watchdog timer asserts an IC reset. In order to perform 
recovery or cleanup tasks, a watchdog threshold is available. Upon watchdog threshold, 
FW is interrupted with an NMI and the FW can choose to re-initialize the watchdog timer 
or perform cleanup (before IC is reset). The activity flow is shown in Fig 8. 

The WDT HAL is implemented in flash HAL since customer may modify it according to 
the application. 

Application

phhalWdt_Start
(timeout,threshold,callback,resetOnTO)

NMI IRQ on threshold

callback

resetOnTO

True

phhalWdt_Refresh()
Exit. IC will 

reset on timeout

False

 

Fig 8. PN7462AU WDT HAL usage 

 

4.3.2 CRC HAL 
The PN7462AU IC provides a CRC co-processor to compute 16/32-bit CRC for a 
32/16/8-bit input data. The co-processor computes the 16/32-bit CRC in parallel, 
providing the output in one clock cycle. The CRC computation can be done with MSB 
first or LSB first of input data stream. The CRC HAL provides the following functions: 

• Calculate the CRC over a buffer of arbitrary length. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

25 of 97 

• Check the CRC of a buffer of arbitrary length with supplied CRC. The supplied CRC 
shall be last 2 bytes or 4 bytes of the buffer. 

 

b0 b1 b2 b3

b4 b5 b6 b7

b8 b9 b10 b11

CalculateCRC crc0 crc1 crc2 crc3ptrToBuffer
, 12 bytes

32 bit 
CRC

b0 b1 b2 b3

b4 b5 b6 b7

b8 b9 b10 b11

CheckCRCptrToBuffer
, 16 bytes

32 bit 
CRC

crc0 crc1 crc2 crc3

buffer

buffer

Zero

CRC OK

CRC NOK

yes

no

 

Fig 9. PN7462AU CRC HAL usage 

 

4.3.3 RNG HAL 
The PN7462AU IC provides an RNG co-processor that generates pseudo-random 
numbers. The RNG HAL provides APIs to generate one or more random numbers. The 
phhalRng_GenerateRng returns time-out error if random number is not generated within 
the initialized time-out. 

This HAL is implemented in ROM3. 

 

phhalRng_GenerateRng(buff, len)

ApplicationFlash Boot

phhalRng_Init
(timeout) phhalRng_DeInit

 

Fig 10. PN7462AU RNG HAL usage 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

26 of 97 

4.4 PN7462AU master interface HALs 
4.4.1 I2CM HAL 

The I2CM HAL provides the following features. 

4.4.1.1 Device-specific configuration 
1. TX/RX FIFO threshold. 
2. TX/RX completion time-out since the HALs are blocking. 
3. Retry count of any transaction. 

• The phhalII2CM_Init() and  phhalI2CM_DeInit()  used to set/reset this configuration. 

 

4.4.1.2 Slave specific configuration 
• Baud rate 
• The SDA hold time 
• 7-bit or 10-bit Address type of the slave 

The baud rate is used to calculate the SCL frequency based in the equation. Users shall 
calculate the baud rate field according to their required SCL frequency  

𝑆𝑆𝑆𝑆𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 27.12 𝑀𝑀𝑀𝑀𝑀𝑀
(27+𝐵𝐵𝐵𝐵𝐹𝐹𝐵𝐵𝐹𝐹𝐵𝐵𝐵𝐵𝐹𝐹)

  

 
• The phhalI2CM_Config() is used for configuration. 

 

4.4.1.3 Slave presence check 

The phhalI2CM_SlaveCheck() is used to perform this check. 

 

4.4.1.4 I2C-bus reset 
• General call reset addressing is used to reset the I2C-bus that resets all attached 

slaves. 
• The phhalI2CM_GenCallReset() is used to for configuration. 
 

4.4.1.5 Single transaction  
• This feature is used when the length of the transaction is greater than 32 bytes. 
• The phhalI2CM_Transmit() and phhalI2CM_Recieve() are used to perform this 

transaction. 
 

4.4.1.6 Multiple transactions 
• This feature is used when multiple short (less than 4 bytes, 8 bytes, or 16 bytes) 

transactions are done to a single slave such as TDA registers read or write 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

27 of 97 

• The phhalI2CM_QueueTx(), phhalI2CM_QueueRx() and phhalI2CM_Start() are used 
to perform these transactions. 

• This features are by compile time macro 
NXPBUILD__PHHAL_I2CM_MULTI_TRANSACTION  

 

4.4.1.7 Device reset 
• This feature is used to reset the I2CM HW in cases when the bus is idle due to HW 

stuck in an erroneous bus condition. This is not I2C bus reset explained in item (4) 
• The phhalI2CM_Reset() is used to perform this feature. 
 

4.4.1.8 I2CM HAL usage overview 

The I2CM Core register functions are implemented in ROM3 and logical functions are 
implemented in flash HAL. 

 

phhalI2CM_Config
(baudRate,sdaHold,addrType)

phhalI2CM_SlaveCheck
(addr)

phhalI2CM_QueueTx/Rx
(slaveAddr,length,*buffer)

phhalI2CM_Start()

ApplicationApplication

phhalI2CM_Init

HAL Operations

phhalI2CM_DeInit

phhalI2CM_Config
(baudRate,sdaHold,addrType)

phhalI2CM_SlaveCheck
(addr)

Application

phhalI2CM_Transmit
(slaveAddr,length,*buffer)

phhalI2CM_Recieve()

phhalI2CM_
GenCallReset

 

Fig 11. PN7462AU I2CM HAL usage 

 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

28 of 97 

4.4.2 SPIM HAL 
The SPIM HAL provides the following features. 

 

4.4.2.1 Device-specific configuration 
• TX/RX completion time-out since the HALs are blocking. 
• phhalSPIM_Init() and phhalSPIM_DeInit() are used to set or reset this configuration. 

 

4.4.2.2 Slave specific configuration 
• Slave to be configured 
• MSB or LSB first transmission 
• CPOL/CPHA modes 
• Baud rate  
• NSS-specific configuration 
• phhalSPIM_Configure() used to perform this configuration 

 

4.4.2.3 TX/RX transactions 

Since SPIM can be used for SD card use case, CRC configuration is required for some 
transactions and not required for some transactions to the same slave. Hence, every 
transaction has CRC configuration which can be enabled or disabled. 
phhalSPIM_Transmit() / Receive() / Transmit_Continue() / Receive_Continue() are used 
for transactions. 
 

4.4.2.4 Water level configuration 

Since SPIM HW is DMA-based, water level interrupt can be used to detect early 
reception complete or transmission complete and synchronize dependent functions. 
phhalSPIM_SetWaterLevel() is used to set the water level and the function callback is 
called in case there is a water level interrupt. 

The SPIM Core register functions are implemented in ROM3 and logical functions are 
implemented in flash HAL. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

29 of 97 

phhalSPIM_Configure
(slave,lsb/

msb,baudrate,cpol,cpha,nss)

phhalSPIM_Transmit
(crc, buffer,length)

phhalSPIM_TransmitContinue
(buff,len)

ApplicationApplication

phhalSPIM_Init

HAL Operations

phhalSPIM_DeInit

callback

Watermark ISR

phhalSPIM_Receive
(crc, buffer,length)

phhalSPIM_ReceiveContinue
(buff,len)

phhalSPIM_SetWaterLevel
(waterlevel,callback)

 

Fig 12. PN7462AU SPIM HAL usage 

 

4.5 Host interface HAL 
The PN7462AU provides four host interfaces to communicate with a host processor. The 
sections described below explain the functions of the host interface. At any instance, only 
one host interface shall be used. Within a boot session of PN7462AU, only one host 
interface is assumed and dynamic switching between host interfaces without an 
intermediate reset is not assumed.  

The host interface can be I2C, SPI, HSU or USB. 

 

4.5.1 I2C 
• The HIF HAL initializes the I2C physical interface with 7-bit slave address and 

enables or disables HW response to device ID request from external I2CM. It also 
configures whether I2C core should reset the complete IC when receiving general call 
address for I2C-bus reset. It also configures if the I2C slave should switch to HS 
mode upon request from I2CM master. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

30 of 97 

4.5.2 SPI 
• The HIF HAL initializes the SPI physical interface with either of the four modes of SPI 

operation. 

Table 17. SPI operation modes 
CPOL CPHA 
Active low sampling @ even edge 

Active low sampling @ odd edge 

Active high sampling @ even edge 

Active high sampling @ odd edge 

 

4.5.3 HSU 
• The HIF HAL initializes the HSU physical interface with the EOF size, baud rate and 

number of stop bits. The interface can also be initialized with auto baud rate 
estimator. If the baud rate estimator is enabled, the HIF HAL ensures that no 
transmission can take place without first reception.  

4.5.3.1 HSU standby scenario 
• When a host sends some frames over HSU during the time PN7462AU IC is in 

standby, one to three bytes of frame are lost. They are characterized and the host 
shall always send dummy one to three bytes before actual frame. To make buffer 
management simple, HIF HAL always reserves the dummy bytes in the buffer. It is 
done so that the received frame is stored at the same offset every time.  

The host interface HAL provides initialization API to configure above HW features – 
phhalHif_Init() API. 

 

4.5.4 USB 
The USB device controller enables USB 2.0 full-speed (12 Mbit per second) data 
exchange with a USB host controller and USB 3.0 hub connection capability. 

 

4.5.5 Frame interfaces 
The PN7462AU provides three different frame interfaces as described below. The frame 
interface to be chosen is initialized using phhalHif_Init() API. 

 

4.5.5.1 Fixed-format frame interface 

In this frame interface, the host processor (e.g.: LPC) and the HIF HW of PN7462AU 
agrees that the frames to be exchanged shall have a header containing the length and a 
trailer containing the 16-bit CRC. The header shall be minimum 2 bytes and maximum of 
4 bytes. The length field can be maximum of 10 bits and can be positioned anywhere 
within the header.  

When the HIF HAL is configured for fixed-format frame interface,  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

31 of 97 

• At reception, the HW shall retrieve the length from the first 2/3/4 bytes of received 
data (e.g.: header) and shall count that many bytes of payload of further reception. 
After the payload, the HW checks the CRC of the received payload.  

• Similarly, at transmission, the HW shall retrieve length from the first 2/3/4 bytes of 
transmit buffer and shall transmit the bytes as payload from the transmit buffer. After 
that, the HW appends the 16-bit CRC. 

Maximum payload that can be transmitted or received is 1024 bytes. 

 

4.5.5.2 Free format frame interface 

In this frame interface, the host processor and the HIF HW of PN7462AU do not agree 
on any fixed format of the frame. Hence the HIF HW cannot parse the header and know 
the length of payload. Hence, the HIF HW cannot count the number of transmitted or 
received bytes and also cannot perform CRC checking or generation. Hence, 
• At reception, the HIF HW uses the physical interface start and stop conditions to 

determine the length of reception. 
• At transmission, a TX length register to determine the length of transmission. 

The HIF application has to perform CRC checking/generation. The format that is 
configured is applicable to both TX and RX.  

Maximum payload that can be transmitted or received is 250 bytes. 

 

4.5.5.3 Native format frame interface 

This format is same as free format with the exception that the maximum payload that can 
be transmitted or received is 1024 bytes. 

 

4.5.6 Buffer interface HAL 
The HIF HW in PN7462AU IC provides four RX buffers and one TX buffer. The HIF HAL 
provides APIs for HIF application to request RX buffer and release RX buffer. The HAL 
also provides APIs to send TX buffer. The access to these APIs is allowed in single task 
context only. The HAL manages the error handling in case of fixed-format mode. The 
HAL configures the HW to either discard erroneous buffer or retain the buffer and pass it 
to the application. 

The ISR calls the callback function upon reception complete or transmission complete. 

The HIF Core register functions are implemented in ROM3 and logical functions are 
implemented in flash HAL. 

  

4.6 PN7462AU PCR HAL 
The PN7462AU IC provides two low-power modes: 
1. Standby mode 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

32 of 97 

2. Suspend mode (only when USB interface is used) 

The PCR HAL is primarily used to put the IC into one of these modes. 

The phhalPcr_Init() is used by the flash boot to initialize the temperature sensors and 
CLIF analog characteristics during standby mode. The phhalPcr_Init() also takes as input 
a bitmap that indicates power down settings during IC suspend (USB suspend). The USB 
suspend performs these power-down settings as well as restores the settings when 
resuming. 

 

4.6.1 Wake-up sources and prevention reason 
The FW configures the sources that would wake up the IC from standby or suspend 
state. The sources that could wake up the IC are tabulated below. Refer 
PCR_WAKEUP_CFG_REG. 

Table 18. Wake-up source 
Wake-up source FW configuration 
WUC ( WUC_VALUE) The FW configures the WUC_VALUE and enable this source so that the IC wakes up every 

WUC_VALUE time period and performing polling operations 

RFLDT The FW enables this source so that the IC wakes up when an external RF is detected. If listen 
mode is not supported, as in the case of EMVCo reader, this source is disabled 

TEMP0 (CL sensor) The FW enables it during flash boot initialization 

TEMP1 (CT sensor) The FW enables it during flash boot initialization 

GPIO The FW enables this source if any peripheral is connected to GPIO that wakes up the IC; for 
example, Keypad 

PVDD_LIMITER If internal LDO is used to generate PVDD, the FW enables this source. While in standby, if 
there is a fault causing more current draw from PVDD LDO, then IC is woken up. But no 
functionality is possible because pad voltage is not available. 

CT_PR The FW enables this source if a CT card has to be detected while in standby.  
If WUC is also enabled, there is a possibility that IC always wakes up because of WUC and CT 
presence is never detected. 

INT_AUX The FW enables this source if a CT card connected to a TDA (through IO-AUX) has to be 
detected while in standby 

TVDD_MON If internal LDO is used to generate TVDD, the FW enables this source. While in standby, if 
there is a fault causing more current draw from TX LDO, then IC is woken up. No RF 
functionality may be possible. 

VBUS_LOW The FW enables this source if for example, the device is a battery-operated one and a drop in 
VBUS is detected while in standby so that indication can be provided to users. 

 

The FW uses the EEPROM structure phhalPcr_WakeUpConfig_t to configure required 
wake-up sources depending on the requirement. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

33 of 97 

Table 19. EEPROM parameters for PCR HAL – Wake-up config 
Wake-up Sources see also phhalPcr_WakeUpConfig_t 
Type  Field name  Default value  Description  
u16 wWakeUpTimerVal 300  Timer value for the wake-up in milliseconds 

u8 bEnableHIFWakeup 0 
Flag to know the host interface wake-up 

 0: Disabled 
1: Enabled 

u8 bI2CAddr 0x28  I2C address if the wake-up is configured for HIF 

u8 bWakeUpTimer 1  
Flag to enable the wake-up timer as wake-up source 

 0: Disabled 
1: Enabled 

u8 bWakeUpRfLdt 0  
Flag to enable the RfLdt as wake-up source 

 0: Disabled 
1: Enabled 

u8 bWakeUpPvddLim 1  
Flag to enable PVDD current limitation as wake-up source when it 
goes below the lower threshold 

 0: Disabled 
1: Enabled 

u8 bWakeUpCtPr 1  
Flag to enable CT presence as wake-up source when it goes below the 
lower threshold 

 0: Disabled 
1: Enabled 

u8 bWakeUpIntAux 0  
Flag to enable PVDD Auxiliary interrupt as wake-up source when it 
goes below the lower threshold 

 0: Disabled 
1: Enabled 

u8 bWakeUpTvddMon 0  
 Flag to enable TVDD Monitoring as wake-up source when it goes 
below the lower threshold 

 0: Disabled 
1: Enabled 

u8 bWakeUpGpio 0  
 Flag to enable GPIO as wake-up source when it goes below the lower 
threshold 

 0: Disabled 
1: Enabled 

For a detailed parameter description, and parameter addresses in the EEPROM refer to 
the EEPROM description [2] file. 

 

If the PN7462AU is not able to go to standby or suspend mode due to some reasons 
such as ongoing transaction in the interfaces, the HW provides the reason.  

The phhalPcr_ApplyLowPower() is used to make the PN7462AU to enter standby or 
suspend mode. The first parameter in the phhalPcr_ApplyLowPower() is used to 
configure the wake-up sources and the second parameter gets the reason for prevention, 
if any. 

Note: If standby is successful, this API will never back. If suspend is successful, this API 
returns back when the IC resumes because of any wake-up source (including USB host 
initiated resume). 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

34 of 97 

4.6.2  Context saving 
The PCR HW in PN7462AU provides eight general-purpose registers which are reserved 
during standby (PCR_GPREG0_REG - PCR_GPREG7_REG). An application may use 
phhalPcr_SaveContext() to save seven DWORDs before entering standby. After waking 
up, it may use phhalPcr_RestoreContext() to retrieve the saved DWORDs. The API 
allows to save seven DWORDs only since PCR_GPREG0_REG is internally used by the 
HALs. 

 

4.6.3 Power down settings during USB suspend mode 
The customer can add or delete this configuration according to the specification and 
board connections. An application may use phhalPcr_ReducePowerConsumption() API 
to apply this power down settings. Refer Table 9 

Table 20. PWD settings during USB suspend mode 
Bit Description 
Bit 0 pull down GPIO pad 1 

Bit 1 pull down GPIO pad 2 

Bit 2 pull down GPIO pad 3  

Bit 3 pull down GPIO pad 4 

Bit 4 pull down GPIO pad 5 

Bit 5 pull down GPIO pad 6 

Bit 6 pull down GPIO pad 7 

Bit 7 pull down GPIO pad 8 

Bit 8 pull down GPIO pad 9 

Bit 9 pull down GPIO pad 10 

Bit 10 pull down GPIO pad 11 

Bit 11 pull down GPIO pad 12 

Bit 12 pull down ATX A pad 

Bit 13 pull down ATX B pad 

Bit 14 pull down ATX C pad 

Bit 15 pull down ATX D pad 

Bit 16 pull down INT_AUX pad 

Bit 17 pull down IO_AUX pad 

Bit 18 pull down CLK_AUX pad 

Bit 19 pull down all SPIM pads(SCK, NSS, MOSI, MISO) 

Bit 20 pull down all IICM pads(SCL, SDA) 

Bit 21 Disable CT clock 

Bit 22 Disable CLIF modules and clocks (disable CLIF_PLL, power down sub-
modules) 

Bit 23 GSN value in standby mode set to standby value 
 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

35 of 97 

Note: If an GPIO pin is used as wake-up source from USB suspend mode, then GPIO pin 
should be configured as input and pulled down. The corresponding GPIO bit position in 
dwPwrDownSettings in EEPROM should be set to 0 to prevent overwriting GPIO pad 
configuration in phhalPcr_ReducePowerConsumption() API. 
 

4.6.4 Register IRQ callback 
The PCR HW events are asynchronous. An application may wish to register for specific 
asynchronous events such as VBUSP (for DCDC LDO) monitor status, PVDD LDO 
current limiter irq take necessary action. 

phhalPcr_SaveContext(array[])

ApplicationFlash Boot

phhalPcr_Init
(TempConfig, 

RFStandbyConfig)

phhalPcr_EnterLowPowerMode(Wakeup 
sources, *PrevReason)

Standby Success

PN7462AU enters 
standby

Standby Prevented

Update *PrevReason 
and Return to 
called function

Wakeup source arrives

ROM Boot

Flash Boot

phhalPcr_RestoreContext
(array[])

phhalPcr_SaveContext(array[])

Application

phhalPcr_EnterLowPowerMode(Wakeup 
sources, *PrevReason)

Suspend  Success

PN7462AU enters 
suspend

Suspend  Prevented

Update *PrevReason 
and Return to 
called function

Wakeup source arrives

Continues from 
current Program 

Counter

Return back to 
called function

phhalPcr_RestoreContext
(array[])  

Fig 13. PN7462AU PCR HAL usage 

 

4.7 PN7462AU PMU HAL 
The PN7462AU provides three LDOs: 
1. TXLDO for CLIF transmitter 
2. PVDD LDO for generating 3.3 V pad voltages (requirement for USB) 
3. DC-DC LDO for CT communication 

The PMU HAL provides interfaces for application to configure these LDOs depending on 
the application use case. 

 

4.7.1 TXLDO HAL 
The TXLDO is started in full power mode. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

36 of 97 

In full power mode, the TXLDO can be configured to provide an output voltage of 3.0 
V/3.3 V/3.6 V/4.5 V/4.75 V. 

Optionally, overcurrent detector can be enabled during its on-period.  

The default boot from flash uses phhalPmu_TxLdoInit() to configure these parameters 
(by reading values from the EEPROM). The API phhalPmu_TxLdoStart() is used to start 
the TXLDO. Whenever the CLIF HW is not used (to reduce power consumption), the 
TXLDO can be stopped using the phhalPmu_TxLdoStop() API. 

For the use cases where the TXLDO output requirement is 4.5 V or 4.75 V, it is required 
to have 5 V at the input of TXLDO. It is checked by the application using 
phhalPmu_TxLdo5VMonitor().  

In the reference boot code and standby/suspend APIs provided by NXP uses the 
phhalPmu_TxLdoStart() on boot up and before entering standby/suspend mode. 

For system configuration, the system does not use internal TXLDO for TVDD. It uses an 
external LDO to connect to TVDD. The application shall set the information during 
initialization. 

Note: If TXLDO is not used, HAL does not check if TVDD is available. 

In case of external TVDD, TVDD_IN supply must be stable before turning on the RF field. 
User application should ensure that TVDD_IN supply is stable before turning ON RF 
field. The PN7462 includes two levels (4 V and 3.3 V) voltage monitor for monitoring the 
voltage on the TVDD_IN or VUP_TX pins. Voltage Monitor can be configured to monitor 
voltage on either TVDD_IN or VUP_TX pins.  

Two APIs “phhalPmu_TxLdoMonitorEnable” and “phhalPmu_TxLdoMonitorCheck” are 
provided to configure and Check Monitor. These APIs should be use by User application 
to ensure TVDD_IN Supply is stable before turning ON RF field. 

 

4.7.2 DC-to-DC LDO HAL 
The DC-to-DC LDO is primarily used to drive the VCC LDO either in the follower mode or 
in doubler mode, depending on the configuration discussed in Table 21. 

Table 21. DC-to-DC LDO mode configuration 
Class of card Voltage @VBUSP DC-to-DC LDO mode 
Class A > 3 V doubler 

Class B < 3.9 V doubler 

> 3.9 V follower 

Class C > 2.7 V follower 

 

The DC-to-DC LDO API phhalPmu_DcdcLdoStart() is used to perform the above 
configuration, depending on the class of card being used for activation. The CT HAL 
internally uses this API and the application does not need to use this API directly. 

The phhalPmu_DcdcLdoStart() also enables the voltage monitor at VBUSP pin, 
depending on the class of card and the mode of operation. If the VBUSP drops below the 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

37 of 97 

threshold voltage, an interrupt is generated. The interrupt performs asynchronous 
deactivation of the CT and notifies the application. 

In FW deactivates CT, the function phhalPmu_DcdcLdoStop() is called automatically. 

Table 22. VBUSP threshold 
Class of card VBUSP monitor 

threshold 
Typical action on reaching below threshold 

class A doubler mode 3 V SW deactivates CT 
class B follower mode 3.9 V SW deactivates CT and  

reactivate in doubler mode 
class B doubler mode 2.7 V SW deactivates CT 
class C follower mode 2.7 V SW deactivates CT 

 

4.7.3 PVDD LDO HAL 
The PN7462AU provides an internal LDO for generating 3.3 V pad voltage. According to 
the system requirement of using internal or external LDO, the HW configuration is 
different. Ideally, if an internal LDO is used, the ROM boot identifies the configuration and 
starts the PVDD LDO. 

The PVDD LDO APIs are typically used during USB suspend scenario. Here, the PVDD 
LDO is put to low power using phhalPmu_PvddLdoLowPower() and reverted to full power 
using phhalPmu_PvddLdoStart() . 

The PVDD LDO HAL API also provides phhalPmu_PvddLdoStop() even though it is not 
used. 

 

4.7.4 Register IRQ callback 
The PMU HW events are asynchronous. An application may wish to register for specific 
asynchronous events such as DC-to-DC Overload, TxLDO overcurrent etc. and take 
necessary action. 

 

4.8 PN7462AU CLKGEN HAL 
In PN7462AU, two clock frequencies are required: 
1. 27.12 MHz for CLIF, CT, I2CM, SPIM, and HSU 
2. 48 MHz for USB 

The system design allows two clock sources to be connected to the crystal pins of the 
PN7462AU. They are: 
1. 27.12 MHz crystal  
2. 27.12 MHz external clock source such as digital clock or on-board resonator 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

38 of 97 

For the clock source of 27.12 MHz crystal, PN7462AU contains a crystal oscillator that 
starts automatically upon booting. Depending on the crystal, there is some delay until the 
oscillator is stable. If the automatic activation fails, the oscillator can be SW activated. 

Application configures the above options with the phhalClkGen_Init() API. 

For the external clock source of 27.12 MHz, ideally the crystal oscillator can be shut-
down. 

 

4.8.1 CLIF clock 
The PN7462AU also contains a PLL that generates a stable 27.12 MHz clock. The PLL 
can be used for the following two reasons: 
1. The PLL is used if the external digital/resonator clock source generates a frequency 

other than 27.12 MHz. It is not supported in this product. 
2. For single-loop ALM use case, DPLL is used to lock to RF clock. It is supported in 

this product. 

Hence for reader modes, active modes and card mode (PLM), PLL is not started and in 
card mode (SL-ALM), PLL is started and is locked to RF clock. 

This functionality is achieved by calling phhalClkGen_ClifClockStart() API. The RF HAL 
internally uses these APIs and the application use them. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

39 of 97 

Application CLKGEN  HALRF HAL

phhalClkGen_Init
(xtal, 3ms, enableSwActivation)

phhalRf_FieldOn(Reader)

CLKGEN  HW

Do not enable PLL
Connect input 27.12MHz 

clock to RF HW Clock

phhalRf_FieldOff(Reader)

Reset the clock configuration

phhalRf_AutoColl(SL-ALM)

Enable PLL (DPLL) to lock to RF 
Clock

Ext RF Field ON

Ext RF Field OFF

Disable PLL (DPLL) 

 

Fig 14. PN7462AU CLKGEN HAL usage – CLIF clock 

4.8.2 USB clock 
The USB requires a bus clock of 48 MHz. This clock is derived from the input source of 
27.12 MHz, by appropriate configuration of USB PLL. During USB HAL initialization, the 
phhalClkGen_UsbClockStart() is called to lock the PLL to 48 MHz. Similarly, during USB 
suspend or USB HAL de-initialization, phhalClkGen_UsbClockStop() is called. 

 

4.9 PN7462AU CT HAL 
The CT HAL provides the following features. 

Note: PN7360AU derivative does not provide CT HAL functionality. 

 

4.9.1 Profiles 
The CT protocol library can be configured with two different profiles, namely ISO7816 or 
EMVCo profile. The configuration can be done during the protocol initialization. The card 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

40 of 97 

activation and the transactions are performed according to the selected profile. It is not 
recommended to switch the profile in between card activation or transaction. 

 

4.9.2 Set Config 
In this version of FW, the profile can be changed at run-time using SetConfig API that 
enables/disables the EMV profile. 
 

4.9.3 Card presence check 
The card presence in the slot can be checked using this feature. This feature provides 
the card presence or absence in the main slot. 

 

4.9.4 Cold activation 
1. Cold activation in class A or class B or class C 
2. ATR reception and on-the-fly ATR parsing according to EMVCo or ISO7816 
 
• phhalCt_CardActivate() API is used to carry out cold activation 

 

4.9.5 Warm reset 
1. Warm reset in class A or class B or class C 
2. ATR reception and on the fly ATR parsing according to EMVCo or ISO7816 
3. Cold activation is mandatory before warm activation 
 
• phhalCt_WarmReset() API is used to do the warm activation 

 

4.9.6 PPS exchange 
1. If the card supports the negotiable mode, PPS exchange is used  
2. Baud rates supported according to EMVCo or ISO7816 
 
• phhalCt_PPSRequestHandling() API is used to do the PPS exchange 

 

4.9.7 Set baud rate 
1. Set baud rate API sets the baud rate for different FiDi values and calculates the 

different timing values (WWT, BWT and CWT) 
2. If the card supports specific mode with higher baud rates, set baud rate is used  
 
• phhalCt_SetBaudRate() API is used set the baud rate. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

41 of 97 

 

4.9.8 Set timer 
• Different modes of the timer can be set using this API 
• Different modes possible are  

− PHHAL_CT_APDUMODE_BWT: It sets the timer mode to BWT mode and sets 
the BWT value 

− PHHAL_CT_APDUMODE_WWT: It sets the timer mode to WWT mode and sets 
the WWTW value 

• The timer values are set before any transaction 
• phhalCt_SetTimer() API is used to set the timer values 

 

4.9.9 Set protocol 
• Set protocol sets the protocol information in the CT hardware 
• phhalCt_SetTransmissionProtocol API is used for setting the protocol 
• This API is mandatory before doing any transaction, which sets either the T = 0 or T 

= 1 protocol in CT hardware 

 

4.9.10 Transceive 
• The phhalCt_Transmit() API is used to transmit the bytes to the card 
• The phhalCt_Receive() API is used to receive the bytes from the card 
• The transmit and receive APIs uses the 32 bytes FIFO internally 
• These APIs send and receive the raw bytes, without knowing any protocol 
• The user can build T = 0 or T = 1 protocol using these APIs to perform transactions 

on the card 
• If these APIs fail to transmit or receive the bytes from the card, appropriate error 

codes are returned to the user 

4.9.11 Card deactivation 
• The card can be deactivated using the phhalCt_CardDeactivate() API 
• User can call this API once the transactions are over, which saves power to the 

reader 
• After deactivation, activation of the card is done before carrying out any new 

transaction 
 

4.9.12 Switch slot 
• The CT slot can be switched from main slot to auxiliary slot and vice versa 
• Auxiliary slot can be used to connect TDA ICs to PN7462AU 
• phhalCt_SwitchSlot() API is used to perform the switch 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

42 of 97 

Note: Connecting TDA IC and performing the transactions are not within the scope of this 
document.  

 

4.9.13 Async shutdown 
During emergency shutdown cases, where a system ISR has to unblock an ongoing CT 
transaction, this API can be used asynchronously. 

 

4.9.14 Register IRQ callback 
The CT HAL Library is a blocking HAL and IRQs and HAL interface through event 
mechanism. If an application has to perform some extra functionality during an IRQ, it 
could register a callback to that IRQ.  

For example, if a CT application has to inform the host upon card removal, it could 
register a callback to that IRQ. 

 

phhalCt_Init

Application

phhalCt_ColdActiv
ate

phhalCt_SetTransm
issionProtocol

phhalCt_SetTimer

phhalCt_Transmit

phhalCt_Receive

phhalCt_Deactivat
e

Transactions

Application

phhalCt_Init

phhalCt_CheckCard
Presence

Activate and 
Transactions

Present

phhalCt_Deinit

Wait for card 
removal

ATR parser

CT ISR

Transmit/ Receive

CT ISR

Card presence

CT ISR

Error events

CT ISR

phhalCt_Deactivat
e

Removed

Application

phhalCt_Init

phhalCt_ColdActiv
ate

phhalCt_PPSReques
tHandling

Default baud rate

Transactions

New baud rate

phhalCt_Deactivat
e

 

Fig 15. PN7462AU CT HAL usage 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

43 of 97 

4.10 PN7462AU RF HAL 
The RF HAL provides the following 5 function categories. 

4.10.1 Common functions 
These functions are common to both initiator and target modes. 
• phhalRf_Init() is called by the application before using the RF interface. Similarly 

phhalRf_DeInit() is called by the application if the RF interface is no longer required. 
• phhalRf_RegCallBack() is used by the application that performs application-specific 

function upon an interrupt arrival. The ISR shall perform HAL-specific functions and 
then call the application-specific function using the callback. This API does not 
enable any interrupt. 

• phhalRf_SetMinGuardTime() is used to configure TX/RX guard time in the HW. This 
API should not be used when transmit/receive is in progress. This API is typically 
used in reader or initiator mode to change. For example, the API is used to change 
the TX guard time for the first frame after RATS based on start-up frame guard time. 

• phhalRf_SetIdleState() is used to stop the communication (transmit/receive) at any 
time. This API can be used in a synchronous way (for example, after transmit/receive 
is complete) or asynchronous way (for example, when transmit/receive is in 
progress). For asynchronous usage, the bIrqEnable parameter shall be set to 1. 

• phhalRf_SetConfig() is used to configure specific HW registers automatically at run 
time. The configurations are specific to the functions such as RF field, initiator 
modes, target modes and exchange functions. 
− CRC / Parity / LastBitsSkip / FirstBitsSkip are configurations common to both 

initiator and target. 
• phhalRf_GetConfig() is provided for symmetry and is used to refer to some 

configuration set by the application using the phhalRf_SetConfig() API. 

 

4.10.2 RF field 
These functions are used to control the RF field generation. 
• phhalRf_FieldOn() is used to switch on the RF field for passive initiator/reader mode, 

active initiator and active target mode. The HAL/HW handles initial RF collision 
avoidance and response RF collision avoidance (for NFC active mode). The 
application is not required to use this function for active target mode since it is 
internally used by AutoColl function of target mode. It is always recommended to 
peform a phhalRf_LoadProtocol_Initiator() before calling phhalRf_FieldOn() for 
passive reader or active initiator. 

• phhalRf_FieldOff() is used to switch off the RF field for passive initiator/reader mode, 
active initiator and active target mode. This function can be used in a synchronous 
way (after transmit or receive is complete) or asynchronous way (when transmit or 
receive is in progress). For example, in a USB suspend ISR, phhalRf_FieldOff() can 
be called to switch off the field even if a TX/RX is ongoing. bIrqEnable parameter is 
set to 1 for asynchronous usage. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

44 of 97 

• phhalRf_FieldReset() is used to switch off and on the RF field. The function takes 
care of maintaining a guard time during the off period and recovery time after 
switching on. 

• phhalRf_GetExtFieldStatus() and phhalRf_GetIntFieldStatus() are used to monitor 
external RF field status and internal RF field status. 

• phhalRf_SetConfig()  
− EXT_FIELD_ON_IRQ is used to enable the external RF ON IRQ. This 

SetConfig(), along with phhalRf_RegCallBack() is used to asynchronously notify 
the application about external RF ON. 

 

4.10.3 Initiator modes 
These functions are used for protocol configuration for passive reader and active initiator 
modes, low-power card detection and MIFARE classic enabling or disabling. 
• The phhalRf_LoadProtocol_Initiator() for various technologies and protocols is done 

internally in two phases through fixed settings and variable settings. The variable 
settings can be loaded from EEPROM/flash, described in section 4.10.6. An 
application has to use the TX/RX number provided in Table 23. 

Table 23. Initiator modes 
Protocol TX RX 
Passive initiator NFC-A 106 kbps 2 2 

Passive initiator NFC-A 212 kbps 3 3 

Passive initiator NFC-A 424 kbps 4 4 

Passive initiator NFC-A 848 kbps 5 5 

Passive initiator NFC-B 106 kbps 7 7 

Passive initiator NFC-B 212 kbps 8 8 

Passive initiator NFC-B 424 kbps 9 9 

Passive initiator NFC-B 848 kbps 10 10 

Passive initiator NFC-F 212 kbps 12 12 

Passive initiator NFC-F 424 kbps 13 13 

Passive Initiator ISO15693_Tx_26_100ASK_Rx_26 15 15 

Passive Initiator ISO15693_Tx_26_10ASK_Rx_53 16 16 

Passive Initiator ISO18000p3m3_TARI_9_44_Rx_424_2MP 18 18 

Passive Initiator ISO18000p3m3_TARI_9_44_Rx_424_4MP 18 19 

Passive Initiator ISO18000p3m3_TARI_9_44_Rx_848_2MP 18 20 

Passive Initiator ISO18000p3m3_TARI_9_44_Rx_848_4MP 18 21 

Passive Initiator ISO18000p3m3_TARI_18_88_Rx_424_2MP 19 18 

Passive Initiator ISO18000p3m3_TARI_18_88_Rx_424_4MP 19 19 

Passive Initiator ISO18000p3m3_TARI_18_88_Rx_848_2MP 19 20 

Passive Initiator ISO18000p3m3_TARI_18_88_Rx_848_4MP 19 21 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

45 of 97 

Protocol TX RX 
Active Initiator A 106 kbps 21 23 

Active Initiator F 212 kbps 22 24 

Active Initiator F 212 kbps 23 25 

 
• The phhalRf_LPCD() is used to perform low-power card detection before actual 

polling. The application using the EEPROM parameter 
gpkphCfg_EE_HW_RfInitUserEE->dwLCPDDurations controls the duration of the 
LPCD. It is the responsibility of the application (user) to provide proper AGC 
reference value and threshold for card detection based on respective system design. 
If the customer passes 0xFF for the AGC reference value or for threshold, the HAL 
retrieves the value from the EEPROM. 

Table 24. EEPROM parameter for RF_LPCD - RfInitUserEE 
See phhalRf_InitUserEE_t 
Type  Field name  Default value  Description  

u32 dwAgcConfig1CMValue 0x0107FF7 
(hex) card mode AGC Config1 value 

u32 dwAgcConfig0CMValue 0x44003 
(hex) card mode AGC Config0 value 

u32 dwLCPDRefValue 0x000020AC 
(hex) reference value of AGC for LPCD 

u32 dwLCPDThreashold 0x00000005 
(hex) threshold value for LPCD 

u32 dwLCPDDurations 0x00000028 
(hex) duration value for LPCD 

u16 wAgcCMInputValue 0x00 (hex) card mode most possible sensitive input value 

u8 bAnaNFCLD 0x02 (hex) NFC LD threshold value 

u8 bAnaTxProt 0x09 (hex) initial value for Ana TX Prot register 

For a detailed parameter description and parameter addresses in the EEPROM refer to 
the EEPROM description [2] file. 

 
• The detections reported by LPCD can be false (polling requests fail). Hence, the 

application has to identify false detections and use the current AGC value 
(*pNewAgcValue) as reference (dwRef_Agc_Value) to next LPCD cycle. 
− Typically, it is done by loading the new AGC value to GPREG and go to standby 

and upon wake-up, retrieve the GPREG as reference value to be provided to 
LPCD API 

 
• Application shall use phhalRf_MFC_Disable() to disable usage of MIFARE classic 

crypto-HW after communication to an MFC card. The phhalRf_MFC_Enable() is used 
internally by MIFARE authenticate function and is typically not required for direct use 
from application. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

46 of 97 

 
• phhalRf_SetConfig()  

 
− JEWEL_MODE is used to configure jewel-specific transmission after identification 

of type 1 tag 
− RX_MULTIPLE is used to configure reception of multiple SENSF_RES for FeliCa 

activation. This SetConfig() is used before transmission of SENSF_REQ 
− EPC_TX_SYMBOL is used to change the SOF for EPCV2 preamble and 

FrameSync 
− HID configuration is used after LoadProtocol_Initiator for ISO15693 to 

communicate with HID cards 

 

4.10.4 Target modes 
These functions are used for protocol configuration for passive card mode and active 
target modes. In passive target mode, single loop active load modulation-specific 
configuration is also taken care of. 
• The phhalRf_LoadProtocol_Target() for various technologies and protocols is done 

internally in two phases through fixed settings and variable settings. The variable 
settings can be loaded from EEPROM/flash, described in section 4.10.6. The 
configuration is further divided into TX and RX settings. An application shall use the 
TX/RX number provided in Table 25. 

• The above API is used only during transitioning from base rate (106 kbps) to higher 
baud rate (> 212 kbps). The AutoColl function takes care of configuring the base 
rates for all the supported technologies. 

Table 25. Target modes 
Protocol TX RX 
Passive target NFC-A 212 kbps 3 3 

Passive target NFC-A 424 kbps 4 4 

Passive target NFC-A 848 kbps 5 5 

Passive target NFC-F 212 kbps 7 7 

Passive target NFC-F 424 kbps 8 8 

Active target A 106 kbps 10 10 

Active target F 212 kbps 11 11 

Active target F 212 kbps 12 12 

 

• The AutoColl function performs the following functionalities: 
− Configuration of type A anti-collision HW feature: The type A anti-collision 

sequence until “SELECT” command is handled by the HW and the HAL function 
manages the HW state machine. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

47 of 97 

− Configures supported technologies such as Type A and Type F in both passive 
mode and/or active mode. 

− The AutoColl returns back upon: 
• Receiving a RATS/ATR_REQ/next frame after SENSF_REQ from reader 
• External RF OFF is detected during the AutoColl function 

4.10.5 Exchange functions 
For passive reader mode usage, exchange functions are used to transmit a poll frame 
and receive a listen frame (phhalRf_PCD_Exchg()). 

A number of specific abstractions for exchange are provided for reader mode: 
• Short frame exchange 
• Anti-collision frame exchange phhalRf_PCD_ExchgISO14443A_ACFrame()) 
• MIFARE classic 3-Way authentication exchange (phhalRf_PCD_ExchgMFC_Auth()) 

 

In the phhalRf_PCD_Exchg(), the application may or may not provide a DWORD aligned 
buffer. If the application provides DWORD aligned buffer, the HAL DMAs the incoming 
frame in the same buffer. If the application provides the DWORD an aligned buffer, the 
HAL DMAs the incoming frame to a local buffer and performs a memory copy from local 
buffer to application provided buffer. Hence it is necessary for application to provide a 
DWORD aligned buffer for exchange function. 

The transmit function phhalRf_Transmit() and receive function phhalRf_Receive() are 
used in passive card mode or passive target mode due to asynchronous reception. 

The phhalRf_Receive() function always DMAs the incoming frame to a local buffer and 
performs a memory copy to the application provided buffer through the receive function. 
It is designed in such a way because of the asynchronous nature of receive. In other 
words, phhalRf_Receive() may be called after a receive is complete. 

In case of LLCP initiator, phhalRf_Transmit() and phhalRf_Receive() is used instead of 
exchange since the application starts the link loss timer after every transmit. 

 

phhalRf_SetConfig() 
1. TIMEOUT_VALUE_US, TIMEOUT_VALUE_MS is used to configure the FDT value 

of reader mode operation 
2. NFCIP1 is used to configure the HW handling of NFCIP1 Sync byte for 

passive/active NFC-A 106 P2P. Application shall use this SetConfig after 
LoadProtocol_Initiator(active A 106) or after receiving a SAK that supports NFC-DEP 
protocol. In target mode, upon detecting active mode 106, the application shall use 
this SetConfig (NFCIP1) 

 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

48 of 97 

 

4.10.6 RF register settings 
During LoadProtocol, the register configuration can be divided into two parts, fixed 
configuration by the HAL and variable configuration by the user. 

 

phhalRf_Init

HAL Operations

phhalRf_DeInit

Application Passive Reader Application

phhalRf_SetMinGuardTime(5ms, Tx) 

phhalRf_FieldOn
(Pasive Reader) 

LoadProtocol_Initiator(2,2)

phhalRf_PCD_ExchgISO14443A_ShortFrame
(ReqA)

phhalRf_PCD_ExchgISO14443A_ACFrame(NVB,UID)

phhalRf_PCD_ExchgISO14443A_StandardFrame(SEL)

phhalRf_SetConfig
(TIMEOUT_VALUE_US, 85)

phhalRf_SetConfig
(EXCHG_TIMEOUT_VALUE_US, 1000)

phhalRf_SetConfig
(TIMEOUT_VALUE_US, 85)

phhalRf_PCD_ExchgMFC_Auth()

phhalRf_PCD_Exchg

phhalRf_FieldOff()

Passive Card Application

phhalRf_AutoColl

phhalRf_Receive()

phhalRf_Transmit()

 

Fig 16. PN7462AU CLIF HAL usage 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

49 of 97 

 

RF HAL (phhalRf)

NxpRdLib HAL Wrapper

ISO14443-3A, 
3B, FeliCa PAL

ISO14443-4A 
PAL

ISO14443-4
PAL

MIFARE
PAL

MFC, 
MFDF, 
MFUL

AL

MFC, 
MFDF, 
MFUL

Example 
App

EMV 
Example 

App
Type A

Discovery 
Loop App

Discovery 
Loop 

AC

FeliCa 
R/W 
App

Type B L4 
Example

Examples Layer 
(phExMain)

Application 
Layer 

Protocol
 Layer 

HAL

NXP Protected ROM

RF ROM HAL

PMU HAL 
(TXLDO)

CLKGEN HAL 
(CLIF PLL)

CLIF HW PMU/PCR 
HW

CLKGEN HW
PN7462AU HW 

Blocks

Timers/CRC/
RNG/

EEPROM HAL

Tools 
(CRC,RNG..)

& 

RTOS 
Abstraction

Timers/CRC/
RNG/

EEPROM HW

 

Fig 17. Contactless architecture view 

 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

50 of 97 

 

4.11 PN7462AU NXP NFC contactless protocol library 
Refer to the NxpRdLib CHM document for NxpRdLib. 

The NxpNfcRdLib\comps\phhalHw\src\PN7462AU contains the reader library HAL API to 
RF HAL API wrapper.  

 

PAL (Protocol Abstraction Layer) – Activation  and Exchange

ISO/IEC 
14443-4mC

AL (Application Layer) - Commandsets

NFC Forum 
Tag type 

operations 

NFC Activity

Discovery 
Loop

BAL (Bus Abstraction Layer) - Interfaces

HAL (Hardware Abstraction Layer) - Readers

Common (Layer independent)

PN512/
RC523

Generic

ISO/IEC 
14443

3A / Jewel

Sw

ISO14443-4 
CID Man.

RC663

Stub

Callback

Tools
(CRC, Parity)

Log

SPI for 
LPC1769

ISO/IEC 
14443

3B

Sw

Key Store

Sw RC663

Generic

ISO/IEC 
14443

4A

Sw

ISO/IEC 
14443

4

Sw

MIFARE

Sw Stub

ISO/IEC 
18092 Target

Sw

Felica 
compliant 
protocol

Sw

ISO/IEC 
18092 Initiator

Sw

EMVCo 
Loop Back

MIFARE 
Classic

Sw

MIFARE 
Ultralight, 

EV1

Sw

Part of 
MIFARE 
DESFire 

CmdsSw

OSAL Utils

NFC P2P Package

LLCP 1.1

SNEP 1.0

Sw

Sw

NFC Apps

Sample P2P 
application

Sw

                                   NFC Protocols

Jewel/
Topaz 

Sw

NDEF Utils

Sw

LPC 
1769

Part of 
FeliCa Cmd 

set

Sw

PN518

CE Layer

T4T-A

Sw

I2C for 
LPC1769

DTA 
Applicaton

Sw

Applicaton

                                      Link Layer

Platform 
independent

Hardware 
independent

ISO/IEC
15693

Sw

PN7462AU

Not Required 
for 

PN7462AU

 

Fig 18. NxpNfcRdLib 

 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

51 of 97 

RF HAL

RdLib HAL Wrapper
(phhalHw/PN7462AU)

NxpNfcRdLib Contactless Protocol 
Library

Non NxpNfcRdLib 
Application NxpNfcRdLib aware Application

 

Fig 19. NxpNfcRdLib HAL wrapper 

4.12 PN7462AU NXP CT protocol library 
The CT protocol library uses the CT HAL APIs. 

 

4.12.1 Profiles 
The CT Protocol library can be configured with two different profiles namely ISO7816 or 
EMVCo profile. The configuration can be done during the protocol initialization. The card 
activation and the transactions are performed according to the selected profile. It is 
recommended not to switch the profile in between card activation or transaction. 

 

4.12.2 Activation loop 
The contact card activation loop is performed according to the ISO7816 or EMVCo 
specification as per the selected profile. The activation of any card always starts with 
class A, followed by class B if class A is not successful and then class C if class B is not 
successful. The ATR bytes are returned to the user after successful activation. 

 

4.12.3 Protocol selection 
User can select the protocol T = 0 or T = 1 according to the capability of the card. It is an 
optional feature. If the user does not select any protocol, the first protocol offered from 
the card is applied by default. 

 

4.12.4 Transceive 
The transceive feature is used to perform the transaction on the contact card. The 
transceive can be either on T = 0 or T = 1 protocol. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

52 of 97 

 

4.12.4.1 T = 0 protocol 

User can carry out the card transaction using the T = 0 protocol, when the card supports 
the T = 0 protocol. The T = 0 protocol supports the following APDU types: 
• Case 1 APDU 
• Case 2 APDU 
• Case 3 APDU 
• Case 4 APDU 
• Get response command 
• Handling of wait extension bytes 

Extended APDU is not supported in case of T=0 protocol. 

 

4.12.4.2 T = 1 protocol 

User can carry out the card transaction using the T = 1 protocol, when the card supports 
the T = 1 protocol. The T = 1 protocol supports the following features: 
• IFSD: Interface device maximum packet size of 255 bytes 
• Handling of I block, S block and R block 
• Chaining from interface device and handling of chaining from card 
• Handling of all error scenarios (mentioned in the Appendix A of ISO7816-3) 
• Handling of wait extension block, abort block and resynchronization block 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

53 of 97 

phpalCt_Init

Application

phpalCt_Activate

phpalCt_Transceive

phpalCt_Deinit
 

Fig 20. PN7462AU CT PAL usage 
 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

54 of 97 

 

5. USB device stack architecture  
The following figure shows the architectural block diagram of the USB device stack. The 
stack consists of three main layers: 
• The Class layer 
• The USB core layer 
• The Device Controller Driver (DCD) layer 

The bottom-most layer is Device Controller Driver (DCD) layer which is also referred as 
hardware layer in this document. The layer above is the USB core layer, which handles 
the USB protocol-specific code. Above that is the class layer which contains the class 
Function Drivers (FD). Finally, the application sits at the top of the stack. 

 

 

Fig 21. USB device stack architecture 

 
Each layer has one or more components which are accessible to user application. Each 
component has two main structures USBD_xxx_API_T and USBD_xxx_INIT_PARAM_T. 
The USBD_xxx_API_T structure contains all the user callable routines to use the 
component. The USBD_xxx_INIT_PARAM_T structure is used by application to specify 
various initialization parameters along with pointers to call back routines. These call-back 
routines can be categorized as event callbacks and stack overrides 
• Event callbacks: They are called by the stack in interrupt context when an 

appropriate event occurs. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

55 of 97 

• Stack overrides: If the default behavior/handling of the stack is not appropriate for the 
user application, these routines are defined to allow customization (override the 
default behavior) of the stack by user. 

 

5.1 Developing with USB device stack 
This section introduces you to application development using USB device stack. The 
topics in this section describe high-level USB concepts and provide step-by-step 
instructions on implementing a USB device using USB Device stack. For detailed 
information on USB concepts, see USB specifications at usb.org. 

Prerequisites 
• Step1: Define USB descriptors 
• Step2: Initializing the USBD stack 
• Step3: Connecting USB IRQ handler 
• Step4: Initialize and attach class drivers 
• Step5: Connect the device 

 

5.1.1 Prerequisites 
• Processor initialization 
• Clocks initialization (oscillator, system PLL and USB PLL) 
• Initialize other necessary configuration related for the board 

 

5.1.2 Step 1: Define USB descriptors 
A USB device provides information about itself in data structures called USB descriptors 
to a host during enumeration process. Hence user application should create these 
descriptors as per the application and provide it to the USB device stack. So that the 
stack takes care of responding to the standard USB requests generated by the host.  

 

5.1.3 Step 2: Initializing the USBD stack 
To initialize the USBD stack, configure the initialization parameters. 

Create an instance of USBD_API_INIT_PARAM_T as a local variable. 

USBD_API_INIT_PARAM_T usb_param; 

Define the memory area USBD stack is be used for its global variables. The application 
has to provide memory area in which the stack can allocate its global variables and also 
the device controller driver buffers. This memory address should be accessible by USB 
bus master. 

usb_param.mem_base  = (uint32_t) gphExCcid_Usb_CORE_Buffer 

usb_param.mem_size  = USBHAL_CORE_MEM_SIZE 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

56 of 97 

 

If the application is using dynamic memory allocator or wants to know exactly how much 
memory stack is required. It can call USBD_HW_API_T::GetMemSize routine to know 
the size of memory buffer stack needs. Set the USB register base address location and 
number of endpoints used by the application to optimize driver buffer space.  

Setting_max_num_ep to more than the maximum number of endpoints available in 
hardware causes program crashes. 

usb_param.usb_reg_base  = PN7462AU_USB_BASE 

usb_param.max_num_ep   = USB_MAX_EP_NUM 

Provide event callback routines for event in which application is interested in. 

usb_param.USB_Configure_Event   = USB_Configure_Event 

usb_param.USB_Reset_Event       = USB_Reset_Event 

 
Define USB descriptors and initialize the descriptor parameter. 

USB_CORE_DESCS_T DeviceDes; 

 
DeviceDes.device_desc        = (uint8_t*)&gphExCcid_DeviceDescriptor 

DeviceDes.high_speed_desc   = (uint8_t*)&gphExCcid_FSConfigurationDescriptor 

DeviceDes.full_speed_desc    = (uint8_t*)&gphExCcid_FSConfigurationDescriptor 

DeviceDes.string_desc        = (uint8_t*)gphExCcid_FSStringDescriptor 

DeviceDes.device_qualifier   = (uint8_t*)0 

 

To initialize the stack, call Init() routine is used. If the routine returns anything other than 
LPC_OK, the parameters are not configured properly. If the initialization call is 
successful, the handle to the instance of USBD stack is returned in UsbHandle 
parameter. Application should store this handle in a global scope variable to access 
stack functions from USBD and IRQ contexts. 

ret = hwUSB_Init(&UsbHandle, &DeviceDes, &usb_param) 
/* Failed initialization */ 
while(ret != LPC_OK) 

  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

57 of 97 

 

5.1.4 Step3: Connecting USB IRQ handler 
USBD stack implements the interrupt handler for USB device controller and invokes the 
USBD stack routines according to the event type. Hence application should connect this 
handler to the application vector table. It is done by calling USBD_HW_API_T::ISR from 
the USB IRQ handler as shown in the code snippet below. The USBD handle passed to 
the ISR() routine is the one obtained in previous step. 

 

void HIF_IRQHandler(void) 
{ 
           hwUSB_ISR(UsbHandle); 
} 

 

5.1.5 Step4: Initialize and attach class drivers 
In the following example, CCID class driver is attached to the only interface (interface 0, 
alt 0) present in the device configuration. 

Configure initialization parameters of the CCID class driver. 

USBD_CCID_INIT_PARAM_T  ccid_param 

Set the memory location where the CCID class driver can allocate buffers and global 
variables. 

All the init() routines are written in such a way that the mem_base and mem_size 
members of the XXX_INIT_PARAM_T are updated with free location and size before 
returning. So that the next component XXX_INIT_PARAM_T can use the update values 
for its init() routine. Applications can cascade the component initialization this way 
without worrying about memory wastage/overlap issues. 

.mem_base = (uint32_t)gphExCcid_Usb_CCID_buffer 

.mem_size      = USBHAL_CCID_MEM_SIZE 

 

Now set the CCID specific parameters. 

.CCID_EpBulkOut_Hdlr  = &CCID_Bulk_Out_hdlr 

.CCID_EpBulkIn_Hdlr    = &CCID_Bulk_In_hdlr 

.CCID_EpIntIn_Hdlr     = &CCID_Interrupt_In_hdlr 

Now call the mwCCID_init routine of the CCID class. 

 

5.1.6 Step5: Connect the device 
Once the core, device controller and class drivers are initialized the stack is ready to 
receive the packets from host. Even if the device is physically connected to the host 
using a USB cable, the host does not recognize the presence of device until the D+ line 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

58 of 97 

is pulled-up using 1.5 kΩ resistor. To enable the connection, the application software 
should call hwUSB_Connect() with enable set to 1. Before enabling the connection, the 
application should enable the USB interrupt. 

 
void phExCcid_Usbd_Connect_Enable(void) 
{ 
      hwUSB_Connect(UsbHandle, 1); 
} 

 

5.1.7 Defining USB descriptors 
A USB device provides information about itself in data structures called USB descriptors. 
This section provides information about various descriptors that a USB device should 
provide to host during enumeration process. 

The host obtains descriptors from an attached device by sending various standard 
control requests (GET_DESCRIPTOR requests) to the default endpoint. Those requests 
specify the type of descriptor to retrieve. In response to such requests, the device sends 
descriptors that include information about the device, its configurations, interfaces and 
the related endpoints. Device descriptors contain information about the whole device. 
Configuration descriptors contain information about each device configuration. String 
descriptors contain Unicode text strings. The USB device stack handles all the standard 
requests, eliminating the complexity from user application, as long as the user application 
provides the proper descriptor arrays to stack initialization routine. 

Every USB device exposes a device descriptor that indicates the class information of the 
device, vendor and product identifiers, and number of configurations. Each configuration 
exposes its configuration descriptor that indicates number of interfaces and power 
characteristics. Each interface exposes an interface descriptor for each of its alternate 
settings that contain information about the class and the number of endpoints. Each 
endpoint within each interface exposes endpoint descriptors that indicate the endpoint 
type and the maximum packet size. User application should provide these descriptors to 
the USB device stack for proper handling of standard requests. 

 

5.1.8 Defining USB device descriptor 
The device descriptor contains information about a USB device as a whole. The 
application, through device_desc field of USB_CORE_DESCS_T structure, provides the 
pointer to memory containing device descriptor. The address is passed to stack 
initialization routine hwUSB_Init(). The user application can create an instance of 
_USB_DEVICE_DESCRIPTOR structure in global scope (defined in memory accessible 
by USB bus master) and pass the address of the instance in device_desc field. Or the 
application can define the descriptor as character array as shown below: 

 
USB_DEVICE_DESCRIPTOR  gphExCcid_DeviceDescriptor = 
{ 

.bLength           = sizeof(USB_DEVICE_DESCRIPTOR), 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

59 of 97 

   .bDescriptorType  = 0x1,     /* USB_DEVICE_DESCRIPTOR_TYPE       */ 
   .bcdUSB          = 0x0200,  /* USB Specification Release Number */ 
   .bDeviceClass     = 0x00,    /* Device Class                     */ 
   .bDeviceSubClass  = 0x00,    /* Device SubClass                  */ 
   .bDeviceProtocol  = 0x00,    /* Device Protocol                  */ 
   .bMaxPacketSize0  = 0x40,    /* Endpoint 0 Max Packet Size       */ 
   .idVendor         = 0x1FC9,  /* Vendor ID                        */ 
   .idProduct        = 0x0117,  /* Product ID                       */ 
   .bcdDevice        = 0x0101,  /* Device Release Number            */ 
   .iManufacturer    = 0x01,    /* Index of String Descriptor- Manufacturer  */ 
   .iProduct         = 0x02,    /* Index of String Descriptor - Product   */ 
   .iSerialNumber    = 0x03,    /* Index of String Descriptor - Serial No  */ 
   .bNumConfigurations = 0x01     /* Number of Configurations            */ 
}; 
 

• bLength: Size of this descriptor in bytes. Always set this field to 18. 
• bDescriptorType: DEVICE descriptor type. Always set this field to 0x01. 
• bcdUSB: Set to USB specification version the device and its descriptors are 

compliant. Setting the value to 0x0200 implies the device is compliant with USB 
specification version 2.00. 

• bDeviceClass: Class code. If this field is reset to zero, each interface within a 
configuration specifies its own class information and the various interfaces operate 
independently. If this field is set to a value between 1 and FEH, the device supports 
different class specifications on different interfaces and the interfaces may not 
operate independently. This value identifies the class definition used for the 
aggregate interfaces. If this field is set to FFH, the device class is vendor-specific. 

• bDeviceSubClass: Set the subclass code of the device as assigned by the USB 
specification group. 

• bDeviceProtocol: Set the protocol code of the device as assigned by the USB 
specification group. 

• bMaxPacketSize: Maximum packet size, in bytes, for endpoint zero of the device. 
Current USB stack implementation assumes 64 bytes, hence set this field to 64. 

• idVendor: Set the USB Vendor ID assigned to the manufacturer of this product, by 
the USB-IF. 

• idProduct: Set the product ID assigned by the manufacturer for this product. 
• bcdDevice: Device release number in binary-coded decimal. 
• iManufacturer: Set index of the string descriptor that provides a string containing the 

name of the manufacturer of this device. Check defining USB string descriptor for 
more details in defining string descriptors. 

• iProduct: Set index of the string descriptor that provides a string that contains a 
description of the device. Check defining USB string descriptor for more details in 
defining string descriptors. 

• iSerialNumber: Set index of the string descriptor that provides a string that contains a 
manufacturer-determined serial number for the device. Check defining USB string 
descriptor for more details in defining string descriptors. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

60 of 97 

• bNumConfigurations: Set the total number of possible configurations for the device. 

 

5.1.9 Defining USB device qualifier descriptor 
The device_qualifier descriptor describes information about a high-speed capable device 
that would change if the device were operating at the other speed (see 
_USB_DEVICE_QUALIFIER_DESCRIPTOR structure). For example, if the device is 
operating at full-speed, the device_qualifier returns information about how it would 
operate at high-speed and vice-versa. The pointer to the memory containing device 
qualifier descriptor is provided by application through device_qualifier field of 
USB_CORE_DESCS_T structure, whose address is passed to stack initialization routine 
hwUSB_Init(). 

Note: If application is implementing full-speed only device, this field should be set to 0. 
And also the field high_speed_desc and full_speed_desc should point to full-speed 
configuration descriptor array. 

 

5.1.10 Defining USB configuration descriptors array 
A USB device exposes its capabilities in the form of a series of interfaces called a USB 
configuration. A USB configuration is described in a configuration descriptor (see 
_USB_CONFIGURATION_DESCRIPTOR structure). A configuration descriptor contains 
information about the configuration and its interfaces, alternate settings, and their 
endpoints. Each interface descriptor or alternate setting is described in a 
_USB_INTERFACE_DESCRIPTOR structure. In a configuration, each interface 
descriptor is followed in memory by all of the endpoint descriptors for the interface and 
alternate setting. Each endpoint descriptor is stored in a 
_USB_ENDPOINT_DESCRIPTOR structure. 

The USB stack assumes that all the descriptors associated with the configuration are 
arranged as a consecutive byte array in memory. The address to this array is passed to 
the stack through full_speed_desc and high_speed_desc field of USB_CORE_DESCS_T 
structure, whose address is passed to hwUSB_Init() routine. The following diagram 
illustrates how configuration information should be laid out in memory. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

61 of 97 

 

Fig 22. PN7462AU USB configuration descriptors 

 
The following example shows the configuration descriptor for the USB CCID class 
device: 
phExCcid_Descriptors_USB_Descriptor_Configuration_t gphExCcid_FSConfigurationDescriptor = 
{ 
    /* Configuration Descriptor */ 
    .Config = 
    { 
        .bLength            = sizeof(USB_CONFIGURATION_DESCRIPTOR),                        /* Length of Descriptor     */ 
        .bDescriptorType    = 0x2,                                                            /* Descriptor Type          */ 
        .wTotalLength    = sizeof(phExCcid_Descriptors_USB_Descriptor_Configuration_t) – 1,/* Total Length             */ 
        .bNumInterfaces      = 1,                                                         /* Number of Interfaces     */ 
        .bConfigurationValue = 1,                                                          /* Configuration Value      */ 
        .iConfiguration      = 0,                                     /* Index of String Descriptor - Configuration */ 
#if (PH_EXCCID_USB_IF_USB_REMOTE_WAKEUP_FTR == 1) 
        .bmAttributes        = 0xA0,                                   /* Configuration Characteristics              */ 
#else 
        .bmAttributes        = 0x80,                                   /* Configuration Characteristics              */ 
#endif 
        .bMaxPower           = 0x7D                                    /* Maximum Power Consumption                  */ 
    }, 
    /* Interface Descriptor */ 
    .Ccid_Interface = 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

62 of 97 

    { 
        .bLength             = sizeof(USB_INTERFACE_DESCRIPTOR),        /* Length of Descriptor      */ 
        .bDescriptorType     = 0x04,                                    /* Interface Descriptor Type */ 
        .bInterfaceNumber    = 0x00,                                    /* Interface Number          */ 
        .bAlternateSetting   = 0x00,                                    /* Alternate Settings        */ 
        .bNumEndpoints       = 0x03,                                    /* Total Number of Endpoints */ 
        .bInterfaceClass     = 0x0B,                                    /* Smart Card Class          */ 
        .bInterfaceSubClass  = 0x00,                                    /* Interface Sub Class       */ 
        .bInterfaceProtocol  = 0x00,                                    /* Interface Protocol        */ 
        .iInterface          = 0x00                                     /* Index of String Descriptor – Interface */ 
    }, 
    .Ccid_Descriptor = 
    { 
        .bLength                = sizeof(USB_SMARTCARD_DESCRIPTOR),     /* Length of Descriptor      */ 
        .bDescriptorType        = 0x21,                                 /* CCID Descriptor Type      */ 
        .bcdCCID                = 0x0110,                               /* CCID Specification Number */ 
        .bMaxSlotIndex          = 0,                                    /* Maximum Slot Index        */ 
        .bVoltageSupport        = 0x7,                                  /* Voltage Support           */ 
        .dwProtocols            = 0x03,                                 /* Protocols Support         */ 
        .dwDefaultClock         = 0xE65,                                /* Default Clock             */ 
        .dwMaximumClock         = 0x37F0,                               /* Maximum Clock             */ 
        .bNumClockSupported     = 0x00,                                 /* Num of Clock Supported    */ 
        .dwDataRate             = 0x26B5,                               /* Data Rate                 */ 
        .dwMaxDataRate          = 0xCF080,                              /* Maximum Data Rate         */ 
        .bNumDataRatesSupported = 0x00,                                 /* Number of Data Rates Sup  */ 
        .dwMaxIFSD              = 0xFE,                                 /* Maximum IFSD              */ 
        .dwSynchProtocols       = 0x0,                                  /* Synch Protocols           */ 
        .dwMechanical           = 0x0,                                  /* Mechanical Features       */ 
        .dwFeatures             = 0x204BE,                              /* Features Supported        */ 
        .dwMaxCCIDMessageLength = 0x10F,                                /* CCID Msg Length           */ 
        .bClassGetResponse      = 0x00,                                 /* Get Response              */ 
        .bClassEnvelope         = 0x00,                                 /* Class Envelope            */ 
        .wLcdLayout             = 0x0,                                  /* LCD Support               */ 
        .bPinSupport            = 0,                                    /* PIN Support               */ 
        .bMaxCCIDBusySlots      = 1                                     /* Busy CCID Slots           */ 
    }, 
    /* Bulk IN End Point Descriptor */ 
    .Ccid_DataInEndpoint = 
    { 
        .bLength             = sizeof(USB_ENDPOINT_DESCRIPTOR),         /* Length of the Descriptor    */ 
        .bDescriptorType     = 0x05,                                    /* Endpoint Descriptor Type    */ 
        .bEndpointAddress    = 0x81,                                    /* Bulk IN Endpoint Address    */ 
        .bmAttributes        = 0x02,                                    /* Attributes                  */ 
        .wMaxPacketSize      = 0x40,                                    /* Maximum Packet Size         */ 
        .bInterval           = 0x00                                     /* Interval Period             */ 
    }, 
    /* Bulk OUT End Point Descriptor */ 
    .Ccid_DataOutEndpoint = 
    { 
        .bLength             = sizeof(USB_ENDPOINT_DESCRIPTOR),         /* Length of the Descriptor    */ 
        .bDescriptorType     = 0x05,                                    /* Endpoint Descriptor Type    */ 
        .bEndpointAddress    = 0x01,                                    /* Bulk Out Endpoint Address   */ 
        .bmAttributes        = 0x02,                                    /* Attributes                  */ 
        .wMaxPacketSize      = 0x40,                                    /* Maximum Packet Size         */ 
        .bInterval           = 0x00                                     /* Interval Period             */ 
    }, 
    .Ccid_InterruptInEndpoint = 
    { 
        .bLength             = sizeof(USB_ENDPOINT_DESCRIPTOR),         /* Length of Descriptor       */ 
        .bDescriptorType     = 0x05,                                    /* Endpoint Descriptor Type   */ 
        .bEndpointAddress    = 0x82,                                    /* Interrupt Endpoint Address */ 
        .bmAttributes        = 0x03,                                  /* Attributes                 */ 
        .wMaxPacketSize      = 0x40,                                    /* Maximum Packet Size        */ 
        .bInterval           = 0x04                                       /* Interval Period            */ 
     }, 
    .Ccid_Termination = 0x00 
 
}; 
 

Note: For devices implementing multiple configurations, the second configuration 
descriptors should follow immediately after the first configuration descriptors with NULL 
descriptor at the end of the second configuration array. 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

63 of 97 

 

5.1.11 Defining USB string descriptor 
Device, configuration, and interface descriptors may contain references to string 
descriptors. String descriptors are referenced by their one-based index number. A string 
descriptor contains one or more Unicode strings; each string is a translation of the others 
into another language. 

A string descriptor contains: 
• bLength: Size of this descriptor in bytes. This field is at offset 0 and occupies 1 byte. 

The size of the descriptor is size of Unicode string + 2. 
• bDescriptorType: STRING descriptor Type. Always set this field to 0x03. This field is 

at offset 1 and occupies 1 byte. 
• bString: UNICODE encoded string. 

 

String index zero for all languages should return a string descriptor that contains an array 
of two-byte LANGID codes supported by the device. Current implementation of USB 
device stack assumes single language support. For applications using US English strings 
this descriptor should be: 

0x04,             /* bLength */ 
0x03,             /* bDescriptorType */ 
WBVAL (0x0409),  /* wLANGID: US English */ 

 

The USB Device stack assumes that all USB strings referenced in various descriptors 
are provided to stack as a single character array containing multiple string descriptors. 
USB Device stack traverses to the next descriptor in array by adding the value of 
bLength field to current index. Hence it is important to construct this descriptor array 
properly with bLength fields reflecting the exact size of its string descriptor. 

 
uint8_t gphExCcid_FSStringDescriptor[] = 
{ 
    /* Index 0x00: LANGID Codes */ 
    0x04, 
    0x03, 
    WBVAL (LANGUAGE_ID_ENG), 
 
    /* Index 0x01: Manufacturer */ 
    0x08, 
    0x03, 
    'N',0,'X',0,'P',0, 
 
    /* Index 0x02: Product */ 
    0x1C, 
    0x03, 
    'P',0,'N',0,'7',0,'4',0,'6',0,'2',0,'A',0,'U',0,'    
',0,'C',0,'C',0,'I',0,'D',0, 
 
    0x0A, 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

64 of 97 

    0x03, 
    '1',0,'.',0,'0',0,'0',0 
}; 

 
Reference: 
Refer the following files in the PN7462AU_ex_phExCcid example: 
1. phExCcid_UsbUser.c 
2. phExCcid_Descriptors.c 
3. phExCcid_UsbCcid.c (Callback functions for CCID class) 
4. phExCcid_Usb_If.c (PN7462AU system specific initialization) 

 

5.2 Porting existing LPC USB Virtual Keyboard implementation to 
PN7462AU 
In order to implement USB HID device class, there is also possibility to port existing 
LPCXpresso USB Virtual keyboard example implementation to the PN7462AU. Suitable 
USB HID device implementation is Virtual keyboard HID example for LPC11u14 MCU 
nxp_lpcxpresso_11u14_usbd_lib_hid_keyboard example project located in 
“LPCXpresso_install_dir\lpcxpresso\Examples\LPCOpen\ 
lpcopen_v2_00a_lpcxpresso_nxp_lpcxpresso_11u14.zip” project archive.  

Refer to PN7462AU_ex_phExVCom example in PSP to create needed project structure 
and to adjust PN7462AU_USB_BASE address. 

Specific HID USB class handler is implemented in USBD ROMSTACK and it is available 
upon request from NXP. 

 

6. PN7462AU PSP examples 
The PN7462AU PSP provides seventeen examples in export controlled version, 
available through NXP DocStore, and fifteen examples in full version available through 
the product page, to demonstrate various features of HALs, NxpNfcReaderLibrary and 
contact protocol library. The structure of all the PSP examples are as follows: 
• The src directory contains “pspexample.c” which contains the main() which is the 

entry point. 
− For example, phExMain example src directory contains phExMain.c and 

phExNFCForum example src directory contains phExNFCForum.c. 
• The individual features within the example are present in independent C source files. 
• The inc directory contains APP_NxpBuild.h which contains all the build configuration 

required for example such as NxpNfcReaderLibrary components, HAL components 
and feature diversity such as standby enable/disable, RTOS/No-RTOS, etc. 

• The logging control for the examples is provided in phCommon/inc/ph_Log.h. 

The logging is disabled if the project is built in release mode or if standby is enabled. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

65 of 97 

6.1 PN7462AU_ex_phExMain 
The phExMain example is provided to demonstrate the following features of PN7462AU 
FW. This example is a standalone example executing inside PN7462AU without any host 
interface. 

 

6.1.1 NFC forum + discovery loop  
This example polls the technologies listed below. Before polling, the discovery loop can 
perform low-power card detection (depending on run-time configuration). 
• Active NFC-A 106 
• Active NFC-F 212 
• Active NFC-F 424 
• Passive NFC-A 106 
• Passive NFC-B 106 
• Passive NFC-F 212 
• Passive NFC-F 424 
• Passive ISO15693 
• Passive ISO18000p3m3 
• Listen for passive & active NFC-A and NFC-F from peer 

The listen duration is taken from EEPROM location: 

wWakeUpTimerVal @ PH_CFG_EE_WAKEUPCONFIG_START_ADDRESS 
(0x2012c0). 

 

6.1.2 Standby 
During the listen duration, the PN7462AU can be in either of the following modes: 
• Active power mode waiting for external RF ON for the duration or CT presence 

interrupt: In this mode, a GP Timer is used for the listen duration. 
• Standby power mode waiting for external RF ON for the duration or CT presence 

wake-up event: In this mode, PCR wake-up counter is used for the listen duration. 

The build macro PHFL_ENABLE_STANDBY controls this behavior. 

 

6.1.3 MIFARE classic reader 
If a type A card is detected with SAK of 0x8 (1 K MFC card) or 0x18 (4 K MFC card), 
then the MF Classic example is executed. The MF classic example assumes an MF 
classic card with a predefined key for the sectors to be accessed. The example performs 
initial authentication of block X and then reads/write to this sector. Further, the example 
performs authentication of another block (say X +1) using the session key established 
during initial authentication (it is called reauthentication). It then performs read/write to 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

66 of 97 

this block (X+1). See the function phExMain_MiFareClassic() and 
phExMain_MifareOperations(). 

Supported Functionalities: 
• Authentication & Re-Authentication 
• Read/Write block 

Implementation in the “phExMain_MiFareClassic.c” file. The default key 
0xFFFFFFFFFFFF is used for both keys Key A and Key B. 

 

6.1.4 MIFARE Ultralight reader 
If a type A card is detected with SAK 0x00, then MF ultralight example is executed. 

The MF ultralight example assumes a non-secure MF ultralight card. The example 
performs read and write to predefined pages of the card. 

Supported functionalities: 
• Read 
• Write 
• Since the stack also supports Type 2 tag, a check is performed to see if the card is 

NDEF tag or ultralight tag. 

Implementation in the “phExMain_MiFareUltralight.c” file. 

 

6.1.5 Jewel reader 
If the ATQA of a Type A card denotes jewel card, the jewel example is executed.  

The jewel example assumes a non-secure jewel card. The example performs read and 
write to predefined blocks of the card. 

Supported functionalities: 
• Read 
• Write 
• Since the stack also supports Type 1 tag, a check is performed to see if the card is 

an NDEF tag or jewel card. 

Implementation in the “phExMain_Jewel.c” file. 

 

6.1.6 ISO14443-4 Type A reader (MFDF card) 
If the detected SAK is 0x20 (expected card is MFDF EV1), then ISO14443-4 Type A 
reader example is executed. This example performs L4 exchange of “GetVersion” 
command at 106, 212, 424, and 848 kbps. No other commands are currently exchanged 
as they require authentication and crypto-operations (which are currently not supported 
in the release). 

Supported functionalities: 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

67 of 97 

• Get version command 
• 106/212/424/848 kbps 
• No encryption  

Implementation in the “phExMain_TypeA_L4Exchange.c” file. 

 

6.1.7 ISO14443-4 Type B reader (EzLink/SLE Card) 
If the detected technology is Type B, then ISO14443-4 Type B reader is executed. This 
example performs L4 exchange of “get challenge” command at 106, 212, 424, and 848 
kbps. No other commands are currently exchanged as they require authentication and 
crypto-operations (which are not currently supported in the release). 

Supported functionalities: 
• Get challenge command 
• 106/212/424/848 kbps 
• No encryption  

Implementation in the “phExMain_TypeB_L4Exchange.c” file. 

 

6.1.8 FeliCa reader 
If the detected technology is NFC –F, FeliCa reader example is executed. This example 
is used to read and write FeliCa frames to FeliCa card at 212/424 kbps. Since the stack 
supports Type 3 tags, check is performed to see if the card is an NDEF tag or FeliCa 
card. 

Supported functionalities: 
• CHECK 
• UPDATE 
• 212/424 kbps 

Implementation in the “phExMain_FeliCa.c” file. 

 

6.1.9 ISO15693 reader (ICODE SLIX card) 
If the detected technology is ISO15693, then this example performs read and write to 
predefined blocks of the card. 

Supported functionalities: 
• Read single block 
• Write single block 
• 26 kb/s TX (1 out of 4 coding) and 26 kb/s RX 

Implementation in the “phExMain_ISO15693.c” file. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

68 of 97 

6.1.10 EPCV2 (ISO18000p3m3) reader – (ICODE ILT card) 
The example performs read and write to predefined blocks of the card. 

Supported functionalities: 
• Read block 
• Write word 
• TX TARI = 9.44 and RX 424_2 manchester period 

Implementation in the “phExMain_ISO18000p3m3.c” file. 

 

6.1.11 NFC forum tag reader/writer 
If the card is detected in type A or type F technology and if the card is NDEF compliant, 
this example performs read and write of NDEF message to the card. The write message 
is always of URI RTD, denoting “nxp.com”. 

Implementation is in phExMain_Type1Tag.c, phExMain_Type2Tag.c, 
phExMain_Type3Tag.c, and phExMain_Type4Tag.c. 

 

6.1.12 ISO14443-4 card mode (until activation) 
During listen, the example can be configured to either act as ISO14443-4 card emulator 
(SAK = 0x20) or NFC-DEP Target (SAK = 0x40). This configuration is done via #define 
macro in phExMain_Clif.h. 

If the SAK is 0x20, discovery loop detects peer ISO14443A reader, the 
phExMain_CardMode is executed, that responds to RATS from the reader. This example 
does not demonstrate L4 APDUs exchange (it is done in phExHCE and 
phExNFCForum). 

 

6.1.13 Passive and active ISO18092 initiator (until activation) 
During active poll mode, if ATR_REQ is received or during passive poll mode, if SAK 
denotes 0x40, then the example implemented in phExMain_PasIni.c/ phExMain_ActIni.c 
is executed. These examples simply transmit a DEP_REQ command with arbitrary 
payload to peer target. The purpose of this example is only to demonstrate integration of 
ISO18092. 

 

6.1.14 Passive ISO18092 target (until activation) 
During listen, the example can be configured to either act as ISO14443-4 card emulator 
(SAK = 0x20) or NFC-DEP Target (SAK = 0x40). This configuration is done via #define 
macro in phExMain_Clif.h. 

If the SAK is 0x40, discovery loop detects peer ISO18092 initiator, the phExMain_PasTgt 
is executed, that responds to ATR_REQ from the initiator. This example further waits for 
a NFC-DEP frame from the initiator. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

69 of 97 

 

6.1.15 Contact 7816 reader 
If the IC boots because of CT presence wake-up or if the CT presence interrupt is 
generated, the phExMain_Ct example is executed. This application activates the card, 
and determines whether the card is of EMVCo payment card or nonpayment card. If 
payment card is detected, the application further communicates with the card to know the 
type of card (master card, visa or amex card), and prints the information. 

ISO7816 supported functionalities: 
• ATR parsing 
• Create MF 
• Create EF 
• Select EF 
• Write binary 
• Read binary 
• Delete EF 
• SCOSTA card 
• TA1 = 97  
• Class A (DC-to-DC converter always in double mode) 

 

6.1.16 RTOS task management 
The phExMain example can be executed in both RTOS. In RTOS environment, three 
tasks are created. 
1. System task  

a. Creates CLIF task  
b. Creates CT task 
c. Waits for PMU/PCR exception events  
d. If standby is enabled, waits for CLIF Task completion 
e. If standby is enabled, Waits for CT Task completion  
f. Enter low-power mode (standby) 

2. CLIF task 
a. If standby is not enabled, starts GP timer for listen duration and wait for GP timer 

expiry 
b. Configure external RF on detection 
c. If boot reason is WUC counter or GP timer expiry, perform polling mode of 

discovery loop 
d. If boot reason is RFLD or external RF is detected, perform listen mode of 

discovery loop 
e. Notify system task if polling/listening is completed and standby is enabled 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

70 of 97 

3. CT task 
a. Enable CT presence interrupt and wait for CT presence interrupt 
b. If boot reason is CT presence or CT presence interrupt is detected, perform CT 

example 
c. Notify system task if polling/listening is completed and standby is enabled 

 
• Fig 25 and Fig 26 illustrate one instance of phExMain execution for both standby and 

non-standby scenarios. 
• The CLIF and CT tasks are independent and can concurrently operate the CL and 

CT interfaces. During such concurrent operation, there is a possibility that CT 
interface may be unstable. It is up to the application design to configure interrupt and 
task priorities for a stable operation.  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

71 of 97 

System Task PCR HAL

EnterLowPowerMode(WUC,RFLD,300ms, CTPres)

PCR HWFlash Boot

phExMain

Set IC Standby

Power On Reset

Wakeup Counter

300m
s

phExMain
(WUC) CLIF TaskCreate CLIF Poll Examples

ClIF Example Start(Poll)

Example Completed
CLIF Task Completed

EnterLowPowerMode(WUC,RFLD,300ms, CTPres)
Set IC Standby 300m

s

RF Level Detector

phExMain
(RFLD) Create

ClIF Example Start(Poll)

CLIF Listen 
Examples

Example Completed
External RF OFF

CLIF Task Completed

EnterLowPowerMode(WUC,RFLD,300ms, CTPres)

NfcLib + HAL + 
CLIF HW

CT Presence

phExMain
(CT Presence)

CT TaskCreate

CLIF Task

CT Example

CT Example(7816 Profile)

CTLib + HAL + CT 
HW

Reader Polling

Card Transactions

CT Terminal Transactions

Card Removed

Example Completed

CT Task Completed

EnterLowPowerMode(WUC,RFLD,300ms, CTPres)

Set IC Standby

Set IC Standby

Reader Transactions

 

Fig 23. PN7462AU phExMain sequence diagram for standby scenario with RTOS 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

72 of 97 

System 
TaskFlash Boot

Power On Reset

CLIF Task
NfcLib + HAL + 

CLIF HWCT Task

Create

CLIF Poll/Listen 
Examples CT Examples

CTLib + HAL + CT 
HW

Timer 
HAL

SetConfig(External RF Detection,TRUE)

Start Timer
(300us)

Timer Expiry

3
0

0m
s

Reader Polling 

SetConfig(External RF Detection, FALSE)

Card Removed

SetConfig(External RF Detection,TRUE)

Start Timer
(300us)

Reader Transactions
CL Card Present

Stop Timer

Card Transactions

SetConfig(External RF Detection,TRUE)

Start Timer
(300us)

CT Card Present

CT Card Removed

Wait for CT Presence Interrupt

Wait for CT Presence Interrupt

PMU/PCR
HAL

Application Specific 
Handling of these 

events. Refernce stack 
provides only stubs

 

Fig 24. PN7462AU phExMain sequence diagram for non-standby scenario with RTOS 

 

6.1.17 No-RTOS management 
In case of No-RTOS, the entry point from flash boot is phExMain_NoRTOS. The 
functionality remains the same except that the CLIF example and the CT examples are 
called from a single executive while loop. It is based on timer interrupt or external RF 
detection or CT presence interrupt. 

 

6.2 PN7462AU_ex_phExEMVCo 
The phExEMVCo example is provided to demonstrate the following EMV features of 
PN7462AU FW. This example is a standalone example executing inside PN7462AU 
without any host interface. 

 

6.2.1 EMVCo discovery loop  
This example polls only type A and type B technologies. No other poll or listen 
technologies are supported. This example also does not support LPCD and standby 
feature. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

73 of 97 

6.2.2 ISO14443-4 reader (type A and type B) 
In this example, the following commands are transacted between the PN7462AU and 
Type A EMV Card. 
• Select (PPSE)  
• SELECT command 
• Get Processing options  
• Read Record  
• Generate AC 
 

6.2.3 Contact EMVCo reader 
This example sends SELECT APDU command to the CT card and expects to receive 
RAPDU command 0x90 0x00. It sends select commands for nine pre-selected types of 
EMVCO cards. 
1. Master card: Credit or Debit (tested) 
2. Visa card: Credit or Debit (tested) 
3. Master card: Maestro (debit card) 
4. Master card: Cirrus (inter-bank network) 
5. Master card: Maestro UK 
6. Visa card: Electron card 
7. Visa card: V PAY card 
8. Visa card: VISA Plus card 
9. Amex card (tested) 
 

6.2.4 RTOS task management 
• For information regarding RTOS task management, refer Section 6.1.16. 

 

6.2.5 No RTOS management 
• For information regarding No RTOS management, refer Section 6.1.17. 

 
 

6.3 PN7462AU_ex_phExHif 
The phExHif example is used for: 
• Demonstrating the host interface loop back functionality for I2C, SPI, HSU  
• Demonstrating the master interface functionality for I2CM, SPIM  
• Demonstrating secondary downloader functionality to EEPROM and flash memory 

over SPI Host interface 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

74 of 97 

• Demonstrating CT functionality with SPI Host interface 
• Demonstrate usage non-RTOS based integration 
• For Host Interface, BUFFER_FORMAT_FREE (struct phhalHif_BuffFormat_t) is used 
• One Application@PN7462AU  

− to demonstrate multiple interface features 
− to characterize performance 

 For example: Optimum FIFO threshold of I2CM is seven words for max 
performance 

 Context switch latency without RTOS is 11 µs 
• Functionality of host interface HALs, master interface HALs, flash/EEPROM memory 

HALs and forwarding of APDU received from host interface to CT interface 
 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

75 of 97 

6.3.1 LPC interfacing 
 

 

Fig 25. PN7462AU_ex_phExHif example setup  

 

The GPIOs of LPC and PN7462AU are used to determine which functionality of this 
example has to be executed. It is also used to select the host interface or master 
interface to be used. For each different functionality, a different LPCXpresso project is 
required for LPC1769 side while PN7462AU side has only the PN7462AU_ex_phExHif 
LPCXpresso project. 

The PN7462AU_ex_phExHif indicates its readiness to LPC1769 through GPIO1 of 
PN7462AU connected to GPIO0.0 of LPC1769 (APP ready pin). 

 

6.3.2 HIF selection 

Table 26. HIF selection 
GPIO5_PN7462AU  GPIO2.0_LPC GPIO4_PN7462AU  GPIO2.1_LPC Chosen HIF 
0 0 invalid 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

76 of 97 

GPIO5_PN7462AU  GPIO2.0_LPC GPIO4_PN7462AU  GPIO2.1_LPC Chosen HIF 
0 1 I2C 

1 0 SPI 

1 1 HSU 

 

6.3.3 Operation selection 
The tabulated GPIO configuration selects the operation performed by examples shown in 
Table 27. 

Table 27. Operation selection 
GPIO8_PN7462AU  
GPIO2.2_LPC 

GPIO7_PN7462AU  
GPIO2.3_LPC 

GPIO6_PN7462AU  
GPIO2.4_LPC 

Operation performed by PN7462AU 
example  

0 0 0 loopback on HIF 

0 0 0 forward HIF RX packet to I2CM TX 

0 1 0 forward HIF RX packet to SPIM TX 

0 1 1 forward HIF RX packet to SPIM & I2CM 
TX both 

1 0 0 program EEP with HIF RX packet 

1 0 1 program flash with HIF RX packet 

1 1 0 forward HIF RX packet to CT 

1 1 1 RFU 

 

6.3.4 EEPROM configuration dependencies 
Values from the following EEPROM structures are used in this example: 
• Boot::EEPROM 
• Boot::FLASH 
• Boot::CT 
• Boot::GPIO 
• HW::I2CM 
• HW::SPIM 
• HW::HIF 
 

6.3.5 LPCXpresso projects provided for LPC1769 
• LPCExHif_HSU_LoopBack_App 
• LPCExHif_HSU_to_I2CM_SPIM_App  
• LPCExHif_I2C_Loopback_App 
• LPCExHif_I2C_to_SPIM_App 
• LPCExHif_SPI_CT_App 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

77 of 97 

• LPCExHif_SPI_LoopBack_App 
• LPCExHif_SPI_to_EEPROM_App 
• LPCExHif_SPI_to_FLASH_App 
• LPCExHif_SPI_to_I2CM_App 
• Supporting libraries 

− PN640_lpc17xx_lib, CMSISv2p00_LPC17xx 

 

6.4 PN7462AU_ex_phExRf 
The phExRf example is provided to demonstrate the contactless application development 
directly using the RF HAL. Since no protocol libraries are used, the feature 
demonstration is not as extensive as PN7462AU_ex_phExMain. Also, this example 
demonstrates the non-RTOS integration of application with HALs. 

 

6.4.1 NFC forum + discovery loop  
For information regarding NFC forum + discovery loop, refer Section 6.1.1, except that 
NxpNfcRdLib discovery loop is not used and APIs from Section 4.10 are directly used. 

 

6.4.2 MIFARE Classic reader 
For information regarding MIFARE classic reader, refer Section 6.1.3. 

The implementation is available in “phExRf_A.c” file. 

 

6.4.3 MIFARE Ultralight reader 
For information regarding NFC forum + discovery loop, refer Section 6.1.4. 

The implementation is available in “phExRf_A.c” file. 

 

6.4.4 Jewel reader 
For information regarding NFC forum + discovery loop, refer Section 6.1.5.  

The implementation is available in “phExRf_A.c” file. 

 

6.4.5 ISO14443-4 type A reader (MFDF Card) 
For information regarding NFC forum + discovery loop, refer Section 6.1.6. 

The implementation is available in “phExRf_A.c” file. 

 

6.4.6 ISO14443-4 type B reader (EzLink/SLE Card) 
For information regarding NFC forum + discovery loop, refer Section 6.1.7. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

78 of 97 

The implementation is available in “phExRf_B.c” file. 

 

6.4.7 FeliCa reader 
For information regarding NFC forum + discovery loop, refer Section 6.1.8. 

The implementation is available in “phExRf_F.c” file. 

 

6.4.8 ISO15693 reader (ICODE SLIX Card) 
For information regarding NFC forum + discovery loop, refer Section 6.1.9. 

The implementation is available in “phExRf_15693.c” file. 

 

6.4.9 EPCV2 (ISO18000p3m3) reader – (ICODE ILT Card) 
For information regarding NFC forum + discovery loop, refer Section 6.1.10. 

The implementation is available in “phExRf_18000p3m3.c” file. 

 

6.4.10 Active mode P2P 
This example only performs active mode NFC-DEP activation to demonstrate the usage 
RF Field control APIs for active mode switching and the SynByte handling for NFC-A 
active mode. 

The implementation is available in “phExRf_ActInit.c and phExRf_CM.c” file. 

 

6.4.11 Card mode 
This example only performs card mode activation (until RATS-ATS) to demonstrate the 
usage of AutoColl API. 

The implementation is available in phExRf_CM.c” file. 

 

6.5 PN7462AU_ex_phExRFPoll 
The example implements the polling for contactless cards without NFC Reader Library 
support and without RTOS (on top of Bare Metal HAL). 

6.5.1 Reader Mode  
Supports TypeA, TypeB, Felica, ISO15693, ISO18000p3m3 protocols 

Device Limit supporting per Technology is 1. 

Supports up to read and write for all protocols. 

Supports proprietary cards Mifare Classic, Mifare UltraLight till read and write 

Supports authentication and reauthentication for Mifare Classic and Inventory read and 
fast Inventory read command for ICODE SLIX 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

79 of 97 

Note- Since Inventory read is a manufacturer specific proprietary command thus 
inventory read will work only for NXP Manufactured ICode Cards one of which is ICODE 
SLIX. 

Supports Topaz/Jewel Tags -  Command supported RID, READ8. 

 

6.5.2 Peer-to-peer Mode 
Supports Active F 212 till ATR REQ only. 

 

6.5.3 Card MODE 
Emulates as Type A Card and supports till I-Block exchange. 

 

6.6 PN7462AU_ex_phExCt 
This example is provided to demonstrate the application development directly over the 
CT HAL APIs. PN7462AU_ex_phExCt activates EMVCo card. SELECT master card 
APDU is sent depending on the protocol supported by the card and expects RAPDU 
0x90 0x00. phExCt uses only the CT HAL APIs to demonstrate the CT functionality. The 
example is also capable of determining the non-EMVCo card or non-Master card. After 
the transactions, deactivation is performed. Also, this example demonstrates the non-
RTOS integration of application with HALs. 

 

6.6.1 EMVCo activation 
The example performs EMVCo activation and EMVCo ATR parsing. It also determines 
the protocol supported by the card. 

 

6.6.2 SELECT master card 
The example sends a SELECT master card APDU and expects a RAPDU 0x90 0x00. 

 

6.7 PN7462AU_ex_phExCT7816 
This example is provided to demonstrate the CT interface capability to work in the 
ISO7816 mode. phExCT7816 activates ISO7816 card and transactions. The example is 
built to work on a SCOSTA card. phExCT7816 demonstrates the CT Protocol Lib + HAL 
APIs. After the transactions, deactivation is performed. Also, this example demonstrates 
the non-RTOS integration of application with HALs. 

 

6.7.1 ISO7816 activation 
The example performs an ISO7816 activation and ISO7816 ATR parsing. Also, it 
determines the protocol supported by the card and applies the protocol supported. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

80 of 97 

 

6.7.2 APDU transactions 
The following APDU’S are sent after the activation of the card. If the card supports the 
following APDU’S (e.g. SCOSTA), proper responses come from the card. 
• Create MF 
• Create EF 
• Select EF 
• Write binary 
• Read binary 
• Delete EF 
 

6.8 PN7462AU_ex_phExCTEMVCo 
For the contact EMVCo reader, the example activates the card and then sends ONLY 
SELECT APDU command, and expects RAPDU 0x90 0x00. 
PN7462AU_ex_phExCTEMVCo demonstrates the CT Protocol Lib + HAL APIs. After the 
transactions, deactivation is performed. The example is also capable of determining the 
Non-EMVCo card. Also, it demonstrates the non-RTOS integration of application with 
HALs. 

6.8.1 EMVCo activation 
The example performs an EMVCo activation and EMVCo ATR parsing. It also 
determines the protocol supported by the card and applies the protocol supported. 

6.8.2 APDU transactions 
The example sends select commands for nine pre-selected types of EMVCO cards after 
successful activation. 
1. Master card: Credit or Debit (tested) 
2. Visa card: Credit or Debit (tested) 
3. Master card: Maestro (debit card) 
4. Master card: Cirrus (inter-bank network) 
5. Master card: Maestro UK 
6. Visa card: Electron card 
7. Visa card: V PAY card 
8. Visa card: VISA Plus card 
9. Amex card (tested) 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

81 of 97 

6.9 PN7462AU_ex_phExCcid 
Example implements USB CCID reader. The PC USB reader example is hosted on the 
PN7462AU and can be tested with any PC/SC application running on the PC with 
Windows OS.  

  

 

Fig 26. PC USB reader example block diagram 

The USB stack and CCID class is implemented in the PN7462AU. The default CCID 
driver present in PC with Windows OS is used for operation. 

 

Fig 27. Example architecture 

 
Note: Detailed description and how to use example is described in “PN7462AU PC CCID 
Reader User Manual”. 
 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

82 of 97 

6.10 PN7462AU_ex_phExDoorAccess 
The example application demonstrates card detection, card authentication and HSU 
interface communication with the PC host. The application is running a NFC polling loop 
and goes to standby mode after each polling loop in case no CL card is detected by the 
RF field of the reader. The polling loop is implemented for Type A, B, F, ISO15693 and 
ISO 1800-P3M3. The application prints out the detected type of the card and UID if 
available. In case the NFC device is detected, the application sends a NDEF message 
containing the NXP webpage address. 

PN7462AU
NFC Reader

PC

Se
ri

al
 In

te
rf

ac
e

 

Fig 28. Door access example  

After each polling loop the application goes to standby mode and remains for 500ms. A 
timer is used as a wakeup source from standby. This process continues until a card is 
detected by the RF field of the reader. If a card is detected, the card type with its UID is 
sent via HSU and will be printed on the PC console. 

In case a MIFARE Classic card is detected, application tries to authenticate the card 
using the default MIFARE key. If the authentication is successful a block of data is read 
from the card. The type of the card, UID and data are sent via HSU and printed on the 
PC console.  

P2P functionality is integrated. When a NFC enabled phone is detected from the RF field 
as an active or passive target the LLCP SNEP will be activated and NDEF message will 
be sent to the mobile device. 

If LPCD is enabled, the reader checks during the wakeup time the presence of a card 
and enters the card detected mode when a card is present & repeats the cycle. If no card 
is present it goes back to standby mode. LPCD is enabled by default. 

Note: 
Detailed description and how to use example is described in “Door Access User Manual”. 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

83 of 97 

 

6.11 PN7462AU_ex_phExDoorAccessEC 
This example is related to the 6.10 but in this version the application is using a MIFARE 
DESFire EV1 card for the authentication, data exchange is done over contactless 
interface and software key store or SAM (Secure Access Module) key store is used for 
storing the authentication key. By default, the software key store is enabled. The user 
can use the SAM key store by enabling corresponding. SAM is a key storage element 
and it should be inserted in the CT main. 

 

Fig 29. Door Access Example - Export Controlled Version 

On power-up, NFC Reader starts polling for (PICC) cards (Type A, B or F, ISO15693, 
ISO18000-3M3) and if no card is present, the reader goes to standby mode. Timer is 
used as a wakeup source from standby - timer periodically every 500 ms. This process 
continues until a card is detected by the RF field of the reader. If a card is detected, the 
card type with its UID is sent via HSU & this is printed on the PC console 

If a MIFARE DESFire EV1 card is detected, the reader tries to select a pre-written 
custom application on the card. It tries to authenticate the card using the key stored in 
SAM. If SAM is not present, then software keys can be used for authentication. If 
authentication is successful a block of data will be read from the card. 

 

Note: 
Detailed description and how to use example is described in “Door Access User Manual”. 
This example is available only with PSP package from NXP DocStore. 
  

PN7462AU
NFC Reader

PC

Se
ria

l I
nt

er
fa

ce

MIFARE
SAM AV2



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

84 of 97 

 

6.12 PN7462AU_ex_phExPos 
POS use-case demo application shows how to use PN7462AU in combination with 
second application hosted on the MCU. In this example LPC1769 is used and connection 
is established through SPI host interface. POS use-case demonstrate the Pay pass 
transaction on the contact and contactless frontend. 

 

Fig 30. POS use case demo architecture 

The POS demo architecture is split into application layer (L2) and low level EMVCo 
compliant layer L1 which is hosted on the PN7462AU. The application layer L2 
commands are simulated in reference microcontroller board (LPC1769) and L1 layer 
components are placed in PN7462AU. 

The application APDU commands (L2) are communicated to PN7462AU through SPI 
host interface. PN7462AU GPIO pin is used to synchronize command / response 
between LPC1769 and PN7462AU. 

IRQ pin is used to notify valid ISO 14443-4 card to LPC1769. 

 
Note: 
Detailed description and how to use example is described in “POS Use Case Demo 
Setup Manual”.  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

85 of 97 

 

Fig 31. POS demo architecture 

 

6.13 PN7462AU_ex_phExNFCCcid 
The NFC CCID is versatile demo application that features: 

• Card detection for TypeA, TypeB, Felica, ISO15693, ISO18000p3m3 
technologies 

• Support for proprietary commands for MIFARE Classic, MIFARE Ultralight and 
MIFARE Ultralight C for read and write.  

• CCID USB device protocol implementation. Supports the Suspend Resume and 
Wakeup Feature. 

• Communication of the CLIF information with the PC using a PCSC application. 
• P2P passive initiator mode. Supports LLCP Initiator Mode for sending the NDEF 

message to the mobile. 

 

6.14 PN7462AU_ex_phExMfCryptoEC 
The PN7462AU_ex_phExMfCrypto demo application includes both CL and CT library 
components. Example is based on the Discovery Loop alongside Crypto layers and it is 
intended to evaluate MIFARE DESFire card functionalities. Application performs 
following operations: 

• Application and Data and Value File creation inside the card. 
• AES authentication of the application. 
• Changing of the key. 
• Enciphered Read of Value File and Plain Read of Data File. 
• Enciphered Write of Value File and Plain write of Data File. 
• Supports Different Keys for Read and write. 
• CT part does not include any crypto example for CT but gives scope to include 

the CT example later 

Note: 
This example is available only with PSP package from NXP DocStore. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

86 of 97 

 

6.15 PN7462AU_ex_phExRfPCDA 
This example demonstrates simple low level API usage to perform detection, anti-
collision, activation, authentication and R/W operation on the Type A cards according to 
ISO14443 and MIFARE standard. 

Application is using low level RF interface HAL implementation in flash. There is 
limitation to only one card at the time. Supported TypeA cards are Type1 TOPAZ, 
MIFARE Ultralight, MIFARE Classic, MIFARE DESFire cards will pass through activation 
and anti-collision and. In the case of MIFARE Classic card also authentication with 
default key is demonstrated. In the case of MIFARE DESFire card L4 activation is 
demonstrated. 
 

6.16 PN7462AU_ex_phExVCom 
This example application features TypeA card detection, RF filed control and 
communication with the PC host over USB CDC interface (VCOM). The example shows 
CDC USB device class implementation. 
 

6.17 PN7462AU_ex_phSystemServices 
This example application demonstrates system services invocation. The PN7462AU 
provides ROM services, also described in 
/PN7462AU/phROMIntf/phhalSysSer/inc/phhalSysSer.h and with more detailed 
description in API documentation. 

This application requires user interface for performing the operations so it is needed to 
use debug mode. Some of the featured system service commands could be irreversible 
or reversible depending on the application mode configured by 
ENABLE_IR_REVERSIBLE_COMMANDS macro.  

PN7462AU_ex_phSystemServices features 
Feature description 
SECROW Lock The HW SecRow contains the SWD access bits, code write-

protection bits and RSTN pin behavior bits. For blocking any further 
writes to SecRow, the phhalSysSer_OTP_SetSecrowLock() is used. 
It prevents further usage of phhalSysSer_OTP_SecrowConfig() 
function. 

Code write protection It is required to lock flash memory from write at HW level. It is locked 
possibly at a stage when secure secondary upgrade is not planned 
for the remaining lifecycle of the product. For such use cases, 
phhalSysSer_OTP_SecrowConfig() is used to lock flash memory 
from any further write. Any flash programming after locking the flash 
results in hard fault. Once SECROW functionality is locked, this 
feature cannot be used anymore. 

Block SWD debugging This command disables PN7462AU SWD debug interface. When the 
PN7462AU IC is delivered from production to user, the default SWD 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

87 of 97 

Feature description 
access level enables the user to view and debug user flash memory, 
user EEPROM memory, user RAM memory, and peripheral registers. 
The access level can be irreversibly changed to prevent view/debug 
access to any memory region or peripheral registers, before 
deploying the IC to the field. phhalSysSer_OTP_SecrowConfig() can 
be used to lock the SWD against any further access. Once SECROW 
functionality is locked, this feature cannot be used anymore. 

Disable primary download Command is used to irreversibly disable the ROM primary download 
feature. On subsequent boots, the ROM boot never enters ROM 
primary download mode, even if DWL_REQ pin and USB_VBUS pin 
is high. This feature is typically used after development and flashing 
of secondary downloader in the flash memory, for subsequent 
code/data upgrades. 

Update Product ID USB Product ID PID update  

Update Vendor ID USB vendor ID update 

Perform In Application 
Programming 

Application asks for FLASH page number. Page is 128bytes long, for 
158kb of the flash memory, the page number is in range 0-1263. The 
selected flash page is updated from user programmable values. 

Set internal PVDD PVDD is pad voltage reference and supply of the host interface 
(HSU, USB, I2C, and SPI) and the GPIOs. This command sets PVDD 
configuration to internal. 

Get ROM version  Commands returns current ROM firmware version 
 

7. PN7462AU RTOS abstraction layer 
The NxpNfcReaderLibrary can be executed either in RTOS environment or non-RTOS 
environment. The HAL code does not change for both the environments. 

phRtos is provided to RTOS abstraction, which wraps either an RTOS or a stub RTOS 
(No RTOS). 

In case of no RTOS, an event wait is modelled as “WFI” and event variable is a global 
variable. Also, tasks are not abstracted in no-RTOS. It means, the examples that 
execute in non-RTOS abstraction run on ARM thread mode only. 

The build time macro PHFL_HALAPI_WITH_RTOS in APP_NxpBuild.h is used to control 
whether RTOS or non-RTOS is used. 
 

8. PN7462AU common utilities layer 
The common utilities layer provides an abstraction to standard library functions such as 
memcpy, memset, memcmp etc. It also provides a delay function that counts, based on 
the CPU clock of 20 MHz. 

 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

88 of 97 

9. PN7462AU critical sections in HAL 
 

The implementation of HAL is supporting applications with several threads which can be 
synchronously activated by software. Additionally, interrupt service routines (ISRs) 
asynchronously interrupt the CPU at any time when signaled by the hardware. Using 
these two mechanisms together can lead to difficulties, which arise when same 
resources are used in different threads. To avoid this critical sections are implemented.  
 
Critical sections are used to synchronize the thread mode and handler mode in HAL. To 
disable IRQ “cpsie” instruction is used and to enable IRQ “cpsid” instruction is used.  
Table 28 contains description of the places in the code where critical sections are 
implemented, times for how long interrupts are disabled and the reason why critical 
section is required. 
 
During the critical section, all interrupts are disabled and any interrupt, which should have 
triggered in this time period, will be delayed or missing.  
 
In the Fig 32 it is presented, as an example, how critical section impact on the interrupts 
during its execution. 
 
 

 

 

Fig 32. PN7462AU Critical Section – Interrupt Missed 
 
 
As presented in the Fig 32 there is a possibility of missing interrupts when the interrupt is 
configured to occur every 100 µs and if the interrupt arrives when the “phhalRf_Receive()” 
API is executing the critical section in passive target mode, the interrupt gets missed 
couple of times. 
 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

89 of 97 

 
Another example when interrupt is delayed: 
A timer interrupt is configured to occur at every 500 µs and if the interrupt arrives when 
the “phhalRf_Receive()” API is executing the critical section in passive target mode, the 
interrupt gets delayed by maximum by 437µs (see Table 28). 
 

 

Fig 33. PN7462AU Critical Section – Interrupt Delayed 
  



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

90 of 97 

Table 28. API table with critical section 
 

File Name API Name Time Reason 

phFlashBoot.c phFlashBoot_PreCheck() 12.2 us 

Setting up the initial interrupt and 
setting priorities for the interrupts. 
Assuming the PVDD is already started 

phhalCt_Activate.c phhalCt_CardDeactivate() 3 us 

A variable updated which is shared in 
thread mode and ISR mode, this is 
required to synchronize the CT in 
thread mode and ISR mode for 
variable update 

phhalCt_Transceive.c phhalCt_Receive() 10.2 us 

There is one variable updated which is 
shared in thread mode and ISR mode, 
this is required to synchronize the CT 
in thread mode and ISR mode for 
variable update 

phhalPcr.c phhalPcr_EnterLowPowerMode() 1.01 ms 

When entering into the low power 
mode, no interrupts are allowed. For 
e.g. If the chip is entering due to 
increase in temperature, there should 
not be any interrupt which stops the 
chip entering into the standby 

phhalPmu.c phhalPmu_TxLdoStandby() 973.4 us 
This time is due to the TVDD cap to 
settle down. 

  phhalPmu_TxLdoStart() 

10.4 us in 
FULL_POWER 
9.2 us in 
LOW POWER 

While starting the LDO (Analog Block), 
it is better not to serve any interrupt 
so that the analog block starts 
correctly. 

phhalI2CM.c phhalI2CM_AsmFill_OR_CopyFifo 3 us 
Filling the I2CM Fifo has to be atomic 
for efficiency 

phhalRf phhalRf_SetIdleState() 4.2 us 

No interrupt is allowed while entering 
Idle State. For e.g. While Hal Shut 
down no clif irqs are acceptable. 

 phhalRf_PCD_Exchg() 28.8 us 

 This is to avoid pre-emption due 
Async Shut Down/SetIdle or other 
external IRQs 

 phhalRf_PCD_Exchg() 20 us 

 A system service Api is being called to 
set up TxRx buffer and during this 
time the interrupts get disabled. 

  phhalRf_Transmit() 46 uS 

 This is to avoid pre-emption due 
Async Shut Down/SetIdle or other 
external IRQs 

  phhalRf_Receive() 437 us 

Passive Target: This is to avoid pre-
emption due Async Shut Down/SetIdle 
or other external IRQs 

  phhalRf_Receive() 33 us 

Active Mode: This is to avoid pre-
emption due Async Shut Down/SetIdle 
or other external IRQs 

 phhalRf_AutoColl() 26 us 

A system service Api is being called 
during the autocoll, where the 
interrupts get disabled during this 
time. 

 phhalRf_LoadProtocol_Initiator() 187.8 us 

 Tx Ocp Irq is not allowed during 
updating of the registers as this will 
over-write them. 

 phhalRf_PCD_ExchgMFC_Auth() 240 us 
A system service Api is being called for 
the Mifare Authentication, where 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

91 of 97 

 
Note 1 
Values in Table 28 are taken at 20MHz HFO clock. These values can vary due to the 
HFO clock tolerance.  
 
Note 2 
The critical sections used in the HAL implementation, can be disabled using the  
“__phUser_EnterCriticalSection()” macro the in “ph_User.h" file.  
 
“#define __phUser_EnterCriticalSection()”. 
 
Note 3 
When critical sections are disabled the API’s may not work as expected. 
There could be some risks like, expected IRQ processing may not happen, the expected 
behavior of the system may be unstable, the expected functions would not be called or 
the expected data update may not happen. 
 
 
  

interrupts get disabled during this 
time. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

92 of 97 

 

10. Abbreviations 

Table 29. Abbreviations 
Acronym Description 
ALM Active Load Modulation 

API Application Programming Interface 

CLIF ContactLess InterFace 

CRC Cyclic Redundancy Code 

CT ConTact Interface 

DMA Direct Memory Access 

EoF End of File 

EEPROM Electrically Erasable Programmable Read Only Memory 

FW FirmWare 

GPIO General-Purpose Input Output 

HAL Hardware Abstraction Layer 

HPD Hard Power-Down 

HSU High Speed UART 

HW HardWare 

LDO Low Drop Out 

NFC Near Field Communication 

NMI Non-Maskable Interrupt 

P2P Peer to Peer 

PAL Protocol Abstraction Layer 

PLM Passive Load Modulation 

PMU Power Management Unit 

POR Power-On Reset 

PSP Product Support Package 

RF Radio Frequency 

ROM Read Only Memory 

RTOS Real Time Operating System 

SDA Serial Data Signal 

SPI Serial Peripheral Interface 

SPIM SPI Master interface 

SRAM Static Random Access Memory 

SW SoftWare 

SWD Serial Wire Debug 

TXLDO Transmitter Low Drop Out 

USB Universal Serial Bus 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

93 of 97 

 

11. References 
 

[1] LPCXpresso webpage: http://www.nxp.com/products/software-and-tools/software-
development-tools/software-tools/lpc-microcontroller-utilities/lpcxpresso-ide-
v8.2.2:LPCXPRESSO 

[2] EEPROM description: “PN7462AU\phHal\phCfg\xml\_output_xml_sizes.html” 
 

 
  

http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/lpc-microcontroller-utilities/lpcxpresso-ide-v8.2.2:LPCXPRESSO
http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/lpc-microcontroller-utilities/lpcxpresso-ide-v8.2.2:LPCXPRESSO
http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/lpc-microcontroller-utilities/lpcxpresso-ide-v8.2.2:LPCXPRESSO


 

 

 

 

  
 

 

 
 

 
 

 
 

 
 

 
 

  

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

94 of 97 

12. Legal information

12.1 Definitions 
Draft — The document is a draft version only. The content is still under 
internal review and subject to formal approval, which may result in 
modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included herein and shall have no liability for the consequences 
of use of such information. 

12.2 Disclaimers 
Limited warranty and liability — Information in this document is believed to 
be accurate and reliable. However, NXP Semiconductors does not give any 
representations or warranties, expressed or implied, as to the accuracy or 
completeness of such information and shall have no liability for the 
consequences of use of such information. 

In no event shall NXP Semiconductors be liable for any indirect, incidental, 
punitive, special or consequential damages (including - without limitation - 
lost profits, lost savings, business interruption, costs related to the removal 
or replacement of any products or rework charges) whether or not such 
damages are based on tort (including negligence), warranty, breach of 
contract or any other legal theory. 

Notwithstanding any damages that customer might incur for any reason 
whatsoever, NXP Semiconductors’ aggregate and cumulative liability 
towards customer for the products described herein shall be limited in 
accordance with the Terms and conditions of commercial sale of NXP 
Semiconductors. 

Right to make changes — NXP Semiconductors reserves the right to make 
changes to information published in this document, including without 
limitation specifications and product descriptions, at any time and without 
notice. This document supersedes and replaces all information supplied prior 
to the publication hereof. 

Suitability for use — NXP Semiconductors products are not designed, 
authorized or warranted to be suitable for use in life support, life-critical or 
safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected 
to result in personal injury, death or severe property or environmental 
damage. NXP Semiconductors accepts no liability for inclusion and/or use of 
NXP Semiconductors products in such equipment or applications and 
therefore such inclusion and/or use is at the customer’s own risk.  

Applications — Applications that are described herein for any of these 
products are for illustrative purposes only. NXP Semiconductors makes no 
representation or warranty that such applications will be suitable for the 
specified use without further testing or modification.  

Customers are responsible for the design and operation of their applications 
and products using NXP Semiconductors products, and NXP 
Semiconductors accepts no liability for any assistance with applications or 
customer product design. It is customer’s sole responsibility to determine 
whether the NXP Semiconductors product is suitable and fit for the 
customer’s applications and products planned, as well as for the planned 
application and use of customer’s third party customer(s). Customers should 
provide appropriate design and operating safeguards to minimize the risks 
associated with their applications and products.  

NXP Semiconductors does not accept any liability related to any default, 
damage, costs or problem which is based on any weakness or default in the 
customer’s applications or products, or the application or use by customer’s 
third party customer(s). Customer is responsible for doing all necessary 
testing for the customer’s applications and products using NXP 
Semiconductors products in order to avoid a default of the applications and 
the products or of the application or use by customer’s third party 
customer(s). NXP does not accept any liability in this respect. 

Export control — This document as well as the item(s) described herein 
may be subject to export control regulations. Export might require a prior 
authorization from competent authorities. 

Evaluation products — This product is provided on an “as is” and “with all 
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates 
and their suppliers expressly disclaim all warranties, whether express, 
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire 
risk as to the quality, or arising out of the use or performance, of this product 
remains with customer. 

In no event shall NXP Semiconductors, its affiliates or their suppliers be 
liable to customer for any special, indirect, consequential, punitive or 
incidental damages (including without limitation damages for loss of 
business, business interruption, loss of use, loss of data or information, and 
the like) arising out the use of or inability to use the product, whether or not 
based on tort (including negligence), strict liability, breach of contract, breach 
of warranty or any other theory, even if advised of the possibility of such 
damages.  

Notwithstanding any damages that customer might incur for any reason 
whatsoever (including without limitation, all damages referenced above and 
all direct or general damages), the entire liability of NXP Semiconductors, its 
affiliates and their suppliers and customer’s exclusive remedy for all of the 
foregoing shall be limited to actual damages incurred by customer based on 
reasonable reliance up to the greater of the amount actually paid by 
customer for the product or five dollars (US$5.00). The foregoing limitations, 
exclusions and disclaimers shall apply to the maximum extent permitted by 
applicable law, even if any remedy fails of its essential purpose. 

12.3 Licenses 
Purchase of NXP ICs with NFC technology 

Purchase of an NXP Semiconductors IC that complies with one of the Near 
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 
does not convey an implied license under any patent right infringed by 
implementation of any of those standards. Purchase of NXP 
Semiconductors IC does not include a license to any NXP patent (or other 
IP right) covering combinations of those products with other products, 
whether hardware or software. 

Purchase of NXP ICs with ISO 14443 type B functionality 

 

This NXP Semiconductors IC is ISO/IEC 14443 Type 
B software enabled and is licensed under Innovatron’s 
Contactless Card patents license for ISO/IEC 14443 
B.  

The license includes the right to use the IC in systems 
and/or end-user equipment. 

RATP/Innovatron 
Technology  

12.4 Trademarks 
Notice: All referenced brands, product names, service names and 
trademarks are property of their respective owners. 

MIFARE — is a trademark of NXP B.V. 

MIFARE Ultralight — is a trademark of NXP B.V. 

MIFARE DESFire — is a trademark of NXP B.V. 

I²C-bus logo — is a trademark of NXP B.V.V 

ICODE and I•CODE — are trademarks of NXP B.V. 



 

 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

95 of 97 

 

13. List of figures

Fig 1. PN7462AU FW block diagram .......................... 3 
Fig 2. PN7462AU FW memory regions ....................... 4 
Fig 3. PN7360AU FW memory regions ....................... 5 
Fig 4. PN7360AU EEPROM memory regions ............. 6 
Fig 5. PN7462AU flash boot flow .............................. 14 
Fig 6. PN7462AU FW memory regions ..................... 15 
Fig 7. PN7462AU timer HAL usage .......................... 23 
Fig 8. PN7462AU WDT HAL usage .......................... 24 
Fig 9. PN7462AU CRC HAL usage........................... 25 
Fig 10. PN7462AU RNG HAL usage .......................... 25 
Fig 11. PN7462AU I2CM HAL usage .......................... 27 
Fig 12. PN7462AU SPIM HAL usage .......................... 29 
Fig 13. PN7462AU PCR HAL usage ........................... 35 
Fig 14. PN7462AU CLKGEN HAL usage – CLIF clock

 ........................................................................ 39 
Fig 15. PN7462AU CT HAL usage.............................. 42 
Fig 16. PN7462AU CLIF HAL usage........................... 48 
Fig 17. Contactless architecture view ......................... 49 
Fig 18. NxpNfcRdLib ................................................... 50 
Fig 19. NxpNfcRdLib HAL wrapper ............................. 51 
Fig 20. PN7462AU CT PAL usage .............................. 53 
Fig 21. USB device stack architecture ........................ 54 
Fig 22. PN7462AU USB configuration descriptors ...... 61 
Fig 23. PN7462AU phExMain sequence diagram for 

standby scenario with RTOS ........................... 71 
Fig 24. PN7462AU phExMain sequence diagram for 

non-standby scenario with RTOS ................... 72 
Fig 25. PN7462AU_ex_phExHif example setup ......... 75 
Fig 26. PC USB reader example block diagram ......... 81 
Fig 27. Example architecture ...................................... 81 
Fig 28. Door access example ..................................... 82 
Fig 29. Door Access Example - Export Controlled 

Version ............................................................ 83 
Fig 30. POS use case demo architecture ................... 84 
Fig 31. POS demo architecture ................................... 85 
Fig 32. PN7462AU Critical Section – Interrupt Missed 88 
Fig 33. PN7462AU Critical Section – Interrupt Delayed

 ........................................................................ 89 



 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

UM10913 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2017. All rights reserved. 

User manual                                                                            
COMPANY PUBLIC 

Rev. 1.3 — 20 March 2017                                                                                     
336613 

96 of 97 

14. List of tables

Table 1. PN7462AU FW modes ...................................... 7 
Table 2. ROM boot EEPROM parameters ...................... 8 
Table 3. Boot result code ................................................ 8 
Table 4. ROM primary download EEPROM parameter... 9 
Table 5. Configuration for USB interface ........................ 9 
Table 6. RST_N pin parameters ................................... 11 
Table 7. Default interrupt priorities ................................ 16 
Table 8. EEPROM parameters for temperature sensors - 

PcrPwrTempConfig ......................................... 17 
Table 9. EEPROM parameters for power down settings - 

PcrPwrDown ................................................... 17 
Table 10. EEPROM parameters for temperature sensors - 

TxAnaStandByConfing .................................... 18 
Table 11. EEPROM parameters for CLKGEN - Clkgen .. 18 
Table 12. EEPROM parameters for PMU – CLIF 

transmitter TxLDO ........................................... 19 
Table 13. EEPROM parameters for RNG HW - RNG ..... 19 
Table 14. EEPROM parameters for GPIO ...................... 20 
Table 15. EEPROM parameters for CT .......................... 22 
Table 16. HAL timer allocation ........................................ 24 
Table 17. SPI operation modes ...................................... 30 
Table 18. Wake-up source .............................................. 32 
Table 19. EEPROM parameters for PCR HAL – Wake-up 

config .............................................................. 33 
Table 20. PWD settings during USB suspend mode....... 34 
Table 21. DC-to-DC LDO mode configuration ................ 36 
Table 22. VBUSP threshold ............................................ 37 
Table 23. Initiator modes ................................................ 44 
Table 24. EEPROM parameter for RF_LPCD - 

RfInitUserEE ................................................... 45 
Table 25. Target modes .................................................. 46 
Table 26. HIF selection ................................................... 75 
Table 27. Operation selection ......................................... 76 
Table 28. API table with critical section ........................... 90 
Table 29. Abbreviations .................................................. 92 



 

 

NXP Semiconductors UM10913 
 PN7462AU Software user manual 

  Please be aware that important notices concerning this document and the product(s) 
described herein, have been included in the section 'Legal information'. 

   

  

© NXP B.V. 2017.  All rights reserved. 

For more information, please visit: http://www.nxp.com 
For sales office addresses, please send an email to: salesaddresses@nxp.com 

Date of release: 20 March 2017                                                                                     
336613 

Document identifier: UM10913 

15. Contents

1. Introduction ......................................................... 3 
2. PN7462AU FW architecture ................................ 3 
2.1 PN7462AU FW block diagram ........................... 3 
2.2 PN7462AU FW layer dependencies view .......... 6 
2.3 PN7462AU FW modes ....................................... 7 
3. PN7462AU ROM FW ............................................ 7 
3.1 PN7462AU ROM boot ........................................ 7 
3.2 PN7462AU ROM primary download ................... 8 
3.3 PN7462AU ROM services ................................ 10 
4. PN7462AU user FW ........................................... 13 
4.1 PN7462AU flash boot ....................................... 13 
4.2 PN7462AU HALs initialization at boot UP ........ 16 
4.3 PN7462AU generic HALs ................................. 22 
4.4 PN7462AU master interface HALs ................... 26 
4.5 Host interface HAL ........................................... 29 
4.6 PN7462AU PCR HAL ....................................... 31 
4.7 PN7462AU PMU HAL ...................................... 35 
4.8 PN7462AU CLKGEN HAL................................ 37 
4.9 PN7462AU CT HAL ......................................... 39 
4.10 PN7462AU RF HAL ......................................... 43 
4.11 PN7462AU NXP NFC contactless protocol library

 ......................................................................... 50 
4.12 PN7462AU NXP CT protocol library ................. 51 
5. USB device stack architecture ......................... 54 
5.1 Developing with USB device stack ................... 55 
5.2 Porting existing LPC USB Virtual Keyboard 

implementation to PN7462AU .......................... 64 
6. PN7462AU PSP examples ................................. 64 
6.1 PN7462AU_ex_phExMain................................ 65 
6.2 PN7462AU_ex_phExEMVCo ........................... 72 
6.3 PN7462AU_ex_phExHif ................................... 73 
6.4 PN7462AU_ex_phExRf .................................... 77 
6.5 PN7462AU_ex_phExRFPoll............................. 78 
6.6 PN7462AU_ex_phExCt .................................... 79 
6.7 PN7462AU_ex_phExCT7816........................... 79 

6.8 PN7462AU_ex_phExCTEMVCo ...................... 80 
6.9 PN7462AU_ex_phExCcid ................................ 81 
6.10 PN7462AU_ex_phExDoorAccess .................... 82 
6.11 PN7462AU_ex_phExDoorAccessEC ............... 83 
6.12 PN7462AU_ex_phExPos ................................. 84 
6.13 PN7462AU_ex_phExNFCCcid ......................... 85 
6.14 PN7462AU_ex_phExMfCryptoEC .................... 85 
6.15 PN7462AU_ex_phExRfPCDA .......................... 86 
6.16 PN7462AU_ex_phExVCom .............................. 86 
6.17 PN7462AU_ex_phSystemServices .................. 86 
7. PN7462AU RTOS abstraction layer .................. 87 
8. PN7462AU common utilities layer .................... 87 
9. PN7462AU critical sections in HAL .................. 88 
10. Abbreviations ..................................................... 92 
11. References ......................................................... 93 
12. Legal information .............................................. 94 
12.1 Definitions ......................................................... 94 
12.2 Disclaimers ....................................................... 94 
12.3 Licenses ........................................................... 94 
12.4 Trademarks ...................................................... 94 
13. List of figures ..................................................... 95 
14. List of tables ...................................................... 96 
15. Contents ............................................................. 97 
 


	1. Introduction
	2. PN7462AU FW architecture
	2.1 PN7462AU FW block diagram
	2.2 PN7462AU FW layer dependencies view 
	2.3 PN7462AU FW modes

	3. PN7462AU ROM FW
	3.1 PN7462AU ROM boot
	3.1.1 PN7462AU ROM boot EEPROM config
	3.1.2 PN7462AU ROM boot result code

	3.2 PN7462AU ROM primary download
	3.2.1 PN7462AU ROM primary download EEPROM config

	3.3 PN7462AU ROM services
	3.3.1 PN7462AU IC lifecycle management services
	3.3.1.1 ROM primary download disable
	3.3.1.2 SWD access permissions
	3.3.1.3 Code write protection
	3.3.1.4 RST_N pin behavior
	3.3.1.5 SecRow lock

	3.3.2 PN7462AU ROM boot configuration
	3.3.3 PN7462AU ROM primary download configuration
	3.3.4 PN7462AU in-application programming
	3.3.5 PN7462AU CLIF ROM HAL
	3.3.6 Utilities
	3.3.6.1 CPU reset from flash boot
	3.3.6.2 Get die ID



	4. PN7462AU user FW 
	4.1 PN7462AU flash boot
	4.1.1 ARM CPU and RAM regions initialization 
	4.1.2 BSS and IDATA initialization
	4.1.3 Default interrupt priorities
	4.1.4 Boot reason and result code handling

	4.2 PN7462AU HALs initialization at boot UP
	4.2.1 Temperature sensor initialization and RF standby configuration
	4.2.2 CLKGEN initialization
	4.2.3 CLIF transmitter TxLDO initialization
	4.2.4 RNG HW Initialization
	4.2.5 GPIO initialization
	4.2.6 General-purpose timers initialization
	4.2.7 Clock 27.12 MHz check
	4.2.8 EEPROM/flash HAL initialization
	4.2.9 RF HAL initialization
	4.2.10 CT HAL initialization
	4.2.11 HAL deinitialization

	4.3 PN7462AU generic HALs
	4.3.1 Timer HAL
	4.3.2 CRC HAL
	4.3.3 RNG HAL

	4.4 PN7462AU master interface HALs
	4.4.1 I2CM HAL
	4.4.1.1 Device-specific configuration
	4.4.1.2 Slave specific configuration
	4.4.1.3 Slave presence check
	4.4.1.4 I2C-bus reset
	4.4.1.5 Single transaction 
	4.4.1.6 Multiple transactions
	4.4.1.7 Device reset
	4.4.1.8 I2CM HAL usage overview

	4.4.2 SPIM HAL
	4.4.2.1 Device-specific configuration
	4.4.2.2 Slave specific configuration
	4.4.2.3 TX/RX transactions
	4.4.2.4 Water level configuration


	4.5 Host interface HAL
	4.5.1 I2C
	4.5.2 SPI
	4.5.3 HSU
	4.5.3.1 HSU standby scenario

	4.5.4 USB
	4.5.5 Frame interfaces
	4.5.5.1 Fixed-format frame interface
	4.5.5.2 Free format frame interface
	4.5.5.3 Native format frame interface

	4.5.6 Buffer interface HAL

	4.6 PN7462AU PCR HAL
	4.6.1 Wake-up sources and prevention reason
	4.6.2  Context saving
	4.6.3 Power down settings during USB suspend mode
	4.6.4 Register IRQ callback

	4.7 PN7462AU PMU HAL
	4.7.1 TXLDO HAL
	4.7.2 DC-to-DC LDO HAL
	4.7.3 PVDD LDO HAL
	4.7.4 Register IRQ callback

	4.8 PN7462AU CLKGEN HAL
	4.8.1 CLIF clock
	4.8.2 USB clock

	4.9 PN7462AU CT HAL
	4.9.1 Profiles
	4.9.2 Set Config
	4.9.3 Card presence check
	4.9.4 Cold activation
	4.9.5 Warm reset
	4.9.6 PPS exchange
	4.9.7 Set baud rate
	4.9.8 Set timer
	4.9.9 Set protocol
	4.9.10 Transceive
	4.9.11 Card deactivation
	4.9.12 Switch slot
	Async shutdown
	4.9.14 Register IRQ callback

	4.10 PN7462AU RF HAL
	4.10.1 Common functions
	4.10.2 RF field
	4.10.3 Initiator modes
	4.10.4 Target modes
	4.10.5 Exchange functions
	4.10.6 RF register settings

	4.11 PN7462AU NXP NFC contactless protocol library
	4.12 PN7462AU NXP CT protocol library
	4.12.1 Profiles
	4.12.2 Activation loop
	4.12.3 Protocol selection
	4.12.4 Transceive
	4.12.4.1 T = 0 protocol
	4.12.4.2 T = 1 protocol



	5. USB device stack architecture 
	5.1 Developing with USB device stack
	5.1.1 Prerequisites
	5.1.2 Step 1: Define USB descriptors
	5.1.3 Step 2: Initializing the USBD stack
	5.1.4 Step3: Connecting USB IRQ handler
	5.1.5 Step4: Initialize and attach class drivers
	5.1.6 Step5: Connect the device
	5.1.7 Defining USB descriptors
	5.1.8 Defining USB device descriptor
	5.1.9 Defining USB device qualifier descriptor
	5.1.10 Defining USB configuration descriptors array
	5.1.11 Defining USB string descriptor

	5.2 Porting existing LPC USB Virtual Keyboard implementation to PN7462AU

	6. PN7462AU PSP examples
	6.1 PN7462AU_ex_phExMain
	6.1.1 NFC forum + discovery loop 
	6.1.2 Standby
	6.1.3 MIFARE classic reader
	6.1.4 MIFARE Ultralight reader
	6.1.5 Jewel reader
	6.1.6 ISO14443-4 Type A reader (MFDF card)
	6.1.7 ISO14443-4 Type B reader (EzLink/SLE Card)
	6.1.8 FeliCa reader
	6.1.9 ISO15693 reader (ICODE SLIX card)
	6.1.10 EPCV2 (ISO18000p3m3) reader – (ICODE ILT card)
	6.1.11 NFC forum tag reader/writer
	6.1.12 ISO14443-4 card mode (until activation)
	6.1.13 Passive and active ISO18092 initiator (until activation)
	6.1.14 Passive ISO18092 target (until activation)
	6.1.15 Contact 7816 reader
	6.1.16 RTOS task management
	6.1.17 No-RTOS management

	6.2 PN7462AU_ex_phExEMVCo
	6.2.1 EMVCo discovery loop 
	6.2.2 ISO14443-4 reader (type A and type B)
	6.2.3 Contact EMVCo reader
	6.2.4 RTOS task management
	6.2.5 No RTOS management

	PN7462AU_ex_phExHif
	6.3.1 LPC interfacing
	6.3.2 HIF selection
	6.3.3 Operation selection
	6.3.4 EEPROM configuration dependencies
	6.3.5 LPCXpresso projects provided for LPC1769

	6.4 PN7462AU_ex_phExRf
	6.4.1 NFC forum + discovery loop 
	6.4.2 MIFARE Classic reader
	6.4.3 MIFARE Ultralight reader
	6.4.4 Jewel reader
	6.4.5 ISO14443-4 type A reader (MFDF Card)
	6.4.6 ISO14443-4 type B reader (EzLink/SLE Card)
	6.4.7 FeliCa reader
	6.4.8 ISO15693 reader (ICODE SLIX Card)
	6.4.9 EPCV2 (ISO18000p3m3) reader – (ICODE ILT Card)
	Active mode P2P
	6.4.11 Card mode

	6.5 PN7462AU_ex_phExRFPoll
	6.5.1 Reader Mode 
	6.5.2 Peer-to-peer Mode
	6.5.3 Card MODE

	6.6 PN7462AU_ex_phExCt
	6.6.1 EMVCo activation
	6.6.2 SELECT master card

	6.7 PN7462AU_ex_phExCT7816
	6.7.1 ISO7816 activation
	6.7.2 APDU transactions

	6.8 PN7462AU_ex_phExCTEMVCo
	6.8.1 EMVCo activation
	6.8.2 APDU transactions

	6.9 PN7462AU_ex_phExCcid
	6.10 PN7462AU_ex_phExDoorAccess
	6.11 PN7462AU_ex_phExDoorAccessEC
	6.12 PN7462AU_ex_phExPos
	6.13 PN7462AU_ex_phExNFCCcid
	6.14 PN7462AU_ex_phExMfCryptoEC
	6.15 PN7462AU_ex_phExRfPCDA
	6.16 PN7462AU_ex_phExVCom
	6.17 PN7462AU_ex_phSystemServices

	7. PN7462AU RTOS abstraction layer
	8. PN7462AU common utilities layer
	9. PN7462AU critical sections in HAL
	10. Abbreviations
	11. References
	12. Legal information
	12.1 Definitions
	12.2 Disclaimers
	12.3 Licenses
	12.4 Trademarks

	13. List of figures
	14. List of tables
	15. Contents

